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Abstract

On plane algebraic curves the so-called Weierstrass kernel plays the same role of the Cauchy
kernel on the complex plane. A straightforward prescription to construct the Weierstrass kernel has
been known for more than one century. How can it be extended to the case of more general curves
obtained from the intersection of hypersurfaces imatimensional complex space? This problem
is solved in this work in the case = 3. As an application, the correlation functions of bosonic
string theories are constructed on a canonical curve of genus four. © 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Algebraic curves and-sheeted branched covers on the projective Rhgrovide an
explicitrepresentation of abstract Riemann surfaces. Besides being an active field of research
in mathematics [1-9], for more than a decade, they have been also successfully applied in
several different topics of theoretical and mathematical physics.
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[33—41]; algebraic curves in polymer physics [42—44]. Other applications of algebraic curves [45-52].
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All the above physical applications involve only plane affine algebraic curves. Moreover,
most of the works are further restricted to the particular case of hyperelliptic curves. The rea-
son is that the latter are very well known in mathematical literature. An invaluable source of
hyperelliptic formulas can be found forinstance in the original Weierstrass lecture notes [53].
As an example, we will give in Section 3 the prescription of Weierstrass for differentials of
the second kind. Already inthe case of the so-callgdymmetric curves, which are the most
straightforward generalization of hyperelliptic curves, superstring calculations like those of
[10-22] areimpossible, because ithas not yet been understood how to construct sections with
half-integer spins or chiral determinants [54—-56] of free fermions with given spin structures.
An exception is provided by more exotic fermions wittnXharacteristics, which have been
solved in [57]. Also neglecting fermions and sticking to bosonic string theory, the computa-
tion of the partition function remains a very complicated task on non-hyperelliptic algebraic
curves.

The explicitness of algebraic curves is indeed of great advantage in understanding the
physical aspects of theories like superstrings whenever Riemann surfaces are involved,
but, on the other side, it is also the main responsible of the above-mentioned difficulties.
Using different approaches, like for instance theta functions, the problems are somewhat
hidden, but they reappear in other forms, in particular when one needs to explore a limited
portion of the moduli space of Riemann surfaces such as that spanngd dyymmetric
curves.

A considerable effort to understand conformal field theories on plane algebraic curves and
to find new applications of non-hyperelliptic curves has been made by the author over the past
ten years, partly in collaboration with Sobczyk and Urbanik. In particular, the applications
of branched covers d?! have been investigated, in which the curves are projected on the
complex projective line. Every compact Riemann surface can be represented in this way.
Branched coverings are also closely related to affine curves in the two-dimensional complex
planeC?. The bosonic string theories on a general non-hyperelliptic algebraic curve of genus
three have been treated in Refs. [58,59], computing the correlation functions of the theory
and its partition function, the latter up to a theta constant. Moreover, the partition function
has been exactly derived ofy symmetric curves in [59]. Even in this case, where the
chiral determinants are well known [60], the calculation of the partition function is not
simple. Indeed, one has still to use the Rauch’s variational method [61] combined with the
Beilinson—Manin formula [62] in order to determine the explicit form of the period matrix.
The same variational approach of Rauch has been exploited in [63,64] to rederive in an
elegant way the Thomae formulae of Bershadsky and Radul [6@],aymmetric curves.

Despite the difficulties of evaluating the partition functions of conformal field theories,
algebraic curves become very convenient in the construction of meromorphic tensors with
poles and zeros of given order at given points, like for example the correlation functions
of the free fields appearing in the bosonic string action [54]. On general plane algebraic
curves, this problem has been solved foriihe systems in [65,66]. The more complicated
case of scalar fields has been treated recently in [67]. The two and four-point amplitudes of
the bosonigg—y systems have instead been derived in [68]. Other useful formulas can be
found in [69-71].

Plane algebraic curves are described by complex coordinates which, depending on the in-
terpretation, can be multivalued functions on the complex plaoeon the complex sphere
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PL. They change their branches at the branch points according to certain monodromy prop-
erties. For this reason, it was thought in a first moment that meromorphic tensors on an
algebraic curve could be easily expanded in terms of the solutions of the related Riemann
monodromy problem (see, e.g. [72]). However, this approach has encountered outstand-
ing obstacles in its concrete realization. Up to now, the best way to expand meromorphic
tensors and to handle their singularity structure is provided by the generalized Laurent
series of [65,66]. To explain their usefulness with an example, one should recall that the
main building block in the construction of the correlation functionsdaf systems and

scalar fields is the Weierstrass kernel [53]. The latter is a differential of the third kind
which, on the curve, plays the same role of the Cauchy kernel on the complex plane. It
is characterized by a simple pole in an assigned point and can be explicitly derived with
an algorithm due to Weierstrass. However, besides the desired pole, there are also several
spurious singularities, which should be eliminated by subtracting suitable counterterms
[3]. A general procedure for this subtraction, which in principle strongly depends on the
form of the curve, has been derived expanding the Weierstrass kernel in generalized Lau-
rent series. As well, an operator formalism on plane algebraic curves has been established
in [65,66].

If the plane curve is regarded as a Riemann surface, the generalized Laurent series can
be considered as a multipoint generalization of the Krichever—Novikov bases [73,74] much
in the spirit of Dick et al. [75,76]. On the other side, the modes entering in the expansion of
meromorphic tensors consist in a finite set of tensors which are multival@@inP!). The
latter have a deeper significance than modes defined on abstract Riemann surfaces, since
they may be interpreted as correlators of exotic conformal field theories on the complex
plane (or sphere). Theories of this kind should be both invariant under the Virasoro group
of conformal transformations and under the monodromy grbtipf the original curve.

The amplitudes of the class of exotic conformal field theories corresponding te Z,

have been constructed in [77] in terms of free bosonizedsystems. Due to the above
mentioned difficulties in computing partition functions, instead, onlyNRpoint functions

with N > 2 can be derived iM is non-Abelian. The cas&1 = D, has been explicitly
worked out in [78]. In this way, a concrete realization of the more general program on
holonomic quantum field theories developed by Sato et al. [79—-83] has been achieved. The
connections between generalized Laurent series and solutions of the Riemann monodromy
problem have been partly explored in [78]. Some glimpses of non-commutativity in string
theory have been anticipated in [84].

Despite of the above progress in understanding conformal field theories, plane algebraic
curves suffer of some limitations. To obtain for instance general non-hyperelliptic Riemann
surfaces of genug > 3, they are not powerful enough and it is necessary to consider
algebraic curves in the complex projective spRéet. Moreover, the smallest dimensional
space in which a curve may be smoothly embedd@d.itn attempting to tredi— systems
and scalar fields on non-plane curves, an immediate difficulty arises, because the analog of
the Weierstrass kernel is not known. As explained before, this kernelis a crucial ingredientin
the derivation of theV-point correlations functions and of any other meromorphic tensor.
This problem is solved here in the particular case of algebraic curves.id simple
expression of the generalized Weierstrass kernel on these curves is obtained and, as an
application, the correlation functions of thec systems and of the scalar fields are computed
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on a canonical curve of genus four. Let us notice that curvés imclude the interesting
subset containing the branched covers of Riemann surfaces.

Since itis too difficult to work on a projective variety, the generalization of the Weierstrass
kernel has been derived in local form after restricting oneself to local open $etswifiere
it is possible to use Euclidean coordinates. This is equivalent to consider affine algebraic
curves inC3. Of course, affine algebraic curves are non-compact, but it is still possible to
relate them to compact Riemann surfaces by taking into account also the point at infinity
and hence considering the extended complex p@eco = PL. A similar strategy has
been followed in the construction of the standard Weierstrass kernel, defined in [53] on
affine algebraic curves i@2 or on a branched cover &f.

The material presented in this paper is divided as follows. Section 2 consists in a brief
and elementary introduction to the concept of algebraic curves. In Section 3, the derivation
of the standard Weierstrass kernel on plane curves is reviewed and its main properties are
discussed. A formula of Weierstrass to build a differential of the second kind on hyperel-
liptic curves is also presented. It is useful to recall this formula because it seems to have no
track in the modern literature, but it is very important whenever current—current interactions
between scalar fields have to be taken into account (see, e.g. [33—41,71]). Section 4 contains
the derivation of the generalized Weierstrass kernel and a discussion of its main properties.
In general, we have been able to show that spurious poles can only appear at points in which
the coordinates describing the algebraic curv€¥rbecome infinitely large. In Section 5,
we treat the particular case of a canonical curve of genus four in detail. As an application, the
correlation functions of thé— systems and of the scalar fields are computed at genus four
in Section 6. These theories have been already studied using several different approaches, so
they provide a good testing ground for the generalized Weierstrass kernel of Section 4. Sur-
face integrals over algebraic curves are expressed as integ&l4rinhe presence of Dirac
3-functions in Appendix A. The final comments and conclusions are presented in Section 7.

2. Riemann surfacesas algebraic varieties

LetP" denote the complex projective space parameterized by coordinatés, .. ., &,.
A homogeneous polynomid (¢) of degreed defines an algebraic hypersurfaceRhas
the locus of the points € P" satisfying the relation

F(£) =0. 2.1)

The hypersurfaces are called quadricg ¥ 2, cubics ifd = 3, quartics ifd = 4, etc. A
projective algebraic variety’ is a subset oP" characterized as the intersection of many
hypersurfaces

V={§ eP'F1(§) = = F(§) =0}, (2.2)

whereFy, ..., Fy,k < n,representaset of homogeneous polynomials of defjtee. , dy,
respectively. Ik = n — 1,V describes arojective algebraic curv€ in P". A pointp € V
is smooth85] if the Jacobian matrix

A(FL ..., F)
- 2.3
J [3(507..',5,1)} (2.3)
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has

rank[7] = k. (2.4)
Closely related to projective algebraic varieties aredffiee algebraic varieties

Vo= {x e C"|fi(x) = --- = fi(x) =0}, (2.5)
f1, ..., fr are polynomials with complex coefficients and= x1, ..., x, denotes a set of

variables in the:-dimensional complex spa€. The definition of smooth points on affine
varieties is analogous to that of smooth points on projective varieties.

It is often convenient to study projective varieties on local open patche®,afhere it
is possible to use Euclidean coordinates. For instance;, fer0, ..., n, one may identify
C" with the following open subsets &' [85]:

UO’ = {[an MR En] € P"lga ?é 0} (26)

via the homeomorphism : U, — C":

SO éj'afl §0+1 én)
oL El= =, 1, ey — 2.7
Plo. - &l (sa &g, g @)
with inverse
(X1, vy Xn) = [x1, o os X0, L, Xog 2y -+ o5 X (2.8)

To simplify the notations, we will consider hereafter only the case 0. In doing that
there is no loss of generality, since none of the variabies. ., &, plays a privileged role
in the present context. Clearly, upon the identifications
&1 &n
= —, ..., Xy = —,
) )
Jaxr, ..o xp) = Fa(Lx1,...,x0), a=1...k, (2.10)

X1 (2.9)

the restriction of a projective variety on Up is equivalent to an affine variety og”
associated to the system of equations

falx1,...,x) =0, a=1 ...k (2.11)

In the special case = n — 1, a projective curve and the affine curve related to it via the
homeomorphism (2.7) differ only by a finite number of points “at infinity”. The latter are

determined by the condition§, = - - - = F,,_1 = & = 0, in which¢ is no longer defined.
To show that, we consider a projective algebraic curve

C={eP'|F1(§) =---=F-1(§) = 0}. (2.12)
Since theF, are homogeneous polynomials of degigea = 1, ... ,n — 1, they can be

written as follows:

dn
Fa®) = Y (€)™ ()" (g% nttin), (2.13)

i1,...,ip=0
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If & = 0, the system of algebraic equations definifigs trivial unless the condition
d, — (i, + - - -+ i1) = O is fulfilled. Thus, the points on the curve correspondingpte- 0
are given by the residual system of equations

da

S @ Gt — g (2.14)

i1,.00sip—1=0

fora =1,...,n — 1. The above relations describe the intersectiom ef1 hypersurfaces
in P*~1, which, by Bézout theorem, contains a finite numbed-0is, . . ., d,_1 common
points as desired.

Algebraic curves are particularly important in the study of compdemann surfaces
The simplest representation of a Riemann surfageof genusg is in terms ofplane
projective algebraic curve®r hypersurfaces iR? associated to a single algebraic equation
of the kind

F(é0,41,82) = 0. (2.15)
A plane curve is saidon-singularor regular provided the condition below is never verified
JIF oF doF
F =" — = O
o 096 0&2
Modulo conformal transformations, any compact Riemann surface coincides with a plane
projective algebraic curve.
A plane curveC can be projected from a poinpt ¢ C onto a complex line. in P2,
which does not contaip. After a linear change of coordinates one may take [0, 0, 1]
andL = {¢& € P?|&, = 0}. The result of the projection is a representation of the Riemann
surface as &dranched covetor n-sheeted coveringf P, whose points are given by the

zeros of the complex polynomigl(x1, x2) = F(1, x1, x2) in the Euclidean coordinates
x1 = &1/&p andxp = &2/&p. Solving the equation

f(x1,x2) =0 (2.17)

with respect tor,, one obtains a multivalued function(x1) of x; € P. The finitebranch
pointsof x2(x1) satisfy the relation

f1,x2) = fOD(x1, x2) = 0, (2.18)

where we have used the notation

(2.16)

m n

d
£ (xg, x0) = —

, . 2.19
9x1" 0] fx1, x2) (2.19)

Starting from a multivalued function, a Riemann surfaggcan be constructed in terms
of sheets and cross-cuts. In analogy with Eq. (2.16), a covet @ non-singular if the
following identities are never satisfied simultaneously:

_o _ O _

= = =0. (2.20)
0x1 0x2
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The double-sheeted coveringsif, or hyperelliptic curveshave very special properties
with respect to the other curves. Their polynomial equation can always be reduced to the
following one:

X5 = Pogia(x1), (2.21)

where Py, 2(x1) is a polynomial of degreeg2+ 2 in x1 with complex coefficients. Ex-
ploiting the groupBL(2, C) of automorphisms of the sphelPé, the number of independent
coefficients reduces tog2— 1. Since a general Riemann surface of gegius 2 depends
on 3¢ — 3 complex parameters, called throduli not all Riemann surfaces can be hyper-
elliptic. As a matter of fact, hyperelliptic curves form only a subset of dimensgon 2 in
the moduli space [1]. On the other side, plane algebraic curves of geausmay be also
non-hyperelliptic, but the number of independent parameters which is possible to accom-
modate in the defining polynomial(¢) of Eq. (2.15) is less thang3— 3 wheng > 3. For
this reason, in order to construct general non-hyperelliptic Riemann surfaces, one usually
considersanonical curveembedded ifPs 1.

A canonical mapy from a Riemann surface, to the projective spacBs~1 can be
established with the help of a basis of holomorphic differentials. .. , w, on X, as
follows:

p:peXy—>lol,...,00 € ps—1, (2.22)

If X, is a general non-hyperelliptic Riemann surfaCe= ¢(X,) is called a canonical
curve. For instance, a canonical curve of gegius 3 is a plane projective algebraic curve
of degree four. The canonical curve with= 4 is instead given by the complete intersection
of a quadric and a cubic iR®. Forg = 5, the canonical curve is a complete intersection of
three quadrics ifP*, etc. A more detailed classifications of canonical curves together with
a thorough discussion of some exceptional cases can be found in [4].

Here, we will limit ourselves to algebraic curvesi, which is the smallest dimensional
projective space in which a curve can be smoothly embedded. In fact, smooth embeddings
are not possible iR?, so that plane algebraic curves are affected by singularities at isolated
points3 Let F(¢) andG (§), & = &o, &1, &2, &3 be two homogeneous polynomials of de-
greesdr anddg, respectively, whose zeros define two hypersurfac®s iiwe are mainly
interested in situations in which the intersection of the two hypersurfacesripletei.e.,
they meet in a single curv&, whose points are given by the following system of algebraic
equations:

F(&o, &1, &2, £3) = G(§0, &1, 62, 63) = 0. (2.23)
We also assume that all the points@fire smooth. The gengsof C is then given by
2¢ — 2 =dpdg(dr +dg — 8). (2.24)
Supposing thadp ## 0 and using the mapping (2.7), we obtain the affine algebraic variety

3 However, a curve in P2 may always be projected PP in such a way that the resulting plane algebraic curve
has only ordinary double points.
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in C3 associated to the polynomial equations

f(x1, x2, x3) = g(x1, x2, x3) = 0. (2.25)

Apart from the exceptional cases described in [4], the above relations describe the complete
intersections of two hypersurfaces@i. One may also view (x) andg(x) as polynomials

of degreesn < dr andn < dg, respectively in the variables. Eliminating the latter, the
resultantR (x1, x2) is a polynomial inx; andx; of degreemnand the equation

R(x1,x2) =0 (2.26)

represents the projection of the curve (2.25)@h Let us notice that with respect to the
case of plane curve, this projection is not unique. For instance, it is possible to eliminate
from (2.25) the variable; instead ofxs. In the latter case, one obtains a different resultant
R’(x1, x3) and a different projection onte?:

R'(x1,x3) = 0. (2.27)

To (2.25) one can also associate a compact Riemann suffaoégenusg constructed as
a ramified covering oP. For example, in the neighborhood of a point where the Jacobian
1, 0f(x)dg(x) 9g(x) df(x)
Jo(x) = -
dx2 0x3 dxp 0x3

(2.28)

is different from zerox; € P! becomes a good local coordinate and it is possible to
solve the system of algebraic equations (2.25) with respegt mdxs. In this way, one
obtains two multivalued functions;(x1) andxs(x1), whose analytic continuation on the
complex lineP* defines a Riemann surface. The ramification points are those in which the
condition/1(x) = Ois satisfied. We stress again the difference with respect to plane curves,
because now there are two possible representatiols af terms of branched covers of
PL, corresponding to Egs. (2.26) and (2.27).

Finally, we show that Eq. (2.25) includes the branched covers of Riemann surface as a
particular sub-case. Indeed, let us consider a compact Riemann surface represented as a
branched cover d?! associated to the vanishing of a polynomial

f(x1,x2) =0. (2.29)

Any Riemann surface of genuscan be mapped into a branched cover of this kind in
a limited region of its moduli space. Solving Eq. (2.29) with respeat;tdhe Riemann
surfaceX, is parameterized as a cur@é with coordinatesx1, x2(x1)). Starting from such
coordinates it is still possible to realize a branched cavef %, by requiring that

g(x2,x3) = 0. (2.30)
3. TheWeierstrasskernel

The Cauchy kernel
dx1

Kc(x1, x2) = (3.1)

X1 — X2
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plays a fundamental role in the construction of the amplitudes of conformal field theories
on the complex plan€. This kernel has the following two properties [3]:

1. As a function ofx1, the kernel is a meromorphic differential with two simple poles in
x1 = x2 and inx; = oco. The residues arg¢1 and—1, respectively.

2. As afunction ofry, the kernel is a meromorphic function with a simple poledn= x;
and a single zero iny; = oo.

A meromorphic function with a single pole cannot exist on a compact two-dimensional
manifold. For this reason, usually it is only required that an an#dg, ¢) dp of the
Cauchy kernel on a Riemann surfaEg should have the following asymptotic behavior in
a neighborhood of the poigt[3]:

d
K(p,q) ~ —r_ 4 A(p,q), (3.2)
P—q

whereA(p, q) is finite atp = ¢.

A kernel with the above property can be constructead-aheeted coverings & using
a well-known algorithm of Weierstrass [53]. To this purpose, let us consider a Riemann
surfaceX, represented as the locus of points defined by Eq. (2.17). Solving this equation
for x2, one obtains a multivalued function(x1), while x; is a d-degree mapping1 :
XY, — Py from the Riemann surface to the projective sphereAny pointp € Y,isina
1-1 correspondence with a point on the branched coyer = x1(p), x2(x1(p)).

Let us put nowy(g) = x1(q), x2(x1(q)), whereg # p. Then an analog of the Cauchy
kernel on the branched cover is the following Weierstrass kernel:

(1, x2) dxy
(x2 —y2) fOD(xq, x2) x1 — y1°

Kw(x,y) = (3.3)

To study its behavior in the limit; — y1, one can expand (y1, x2) in series of Taylor
near the poink, = y»:

FO1Lx2) ~ fO1,y2) + FOP (1, y2) (2 — y2) + -+ - . (3.4)

Sincef(y1, y2) = 0, itis clear that the Weierstrass kernel satisfies requirement (3.2)

dxq
xX1—y1

The next term in the Taylor expansion gives in fact a contribution proportional to

FO2(y1, y2) fAO (x1, x2)
FOD(xq, x2)

which is finite wheny = yj.

One should also consider those poiptg: ¢ € X, which, on the branched cover, corre-
spond to coordinates(p) andy(q) such thatv1(p) = x1(q) andxz(x1(p)) # x2(x1(q)).
In this case, there is no spurious pole in the Weierstrass kernel despite the presence of the

A(xy, y1) = x1, (3.6)
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factor (x1 — y1) 1. As a matter of fact, expanding the functigiiy1, x2) in series of Taylor
in y1:
fO1x2) = fOrnx2) + FEO 61, x2) (1 — y1) + - (3.7)
and substituting in (3.3), one obtains
FEO(xq, x2)
(x2 — y2) OV (x1, x2)

which is finite because, — y2 # 0 by hypothesis.
One may also check that the Weierstrass kernel has no spurious poles at the branch points
if the curve is regular. To this purpose it is possible to exploit the relation

dx1, (3.8)

Kw(x,y) ~

dxq . dxo
FOD(xg, x2)  fAO(xg, x2)°

which is a consequence of the implicit function theorem [85]. Let us now consider a branch
pointx1 = x1(a) of multiplicity v, wherev is an integer and € X,. We suppose for the
moment thak2(x1(a)) is finite. Near the branch point we choose a good local coordinate
such that

(3.9)

x1 —x1(a) =1". (3.10)

Sincexza(x1(a)) is not divergent, its approximate expansion in powers wfill look as
follows:

X2 ’Voto+(x1t+012t2+-~- (3.11)

with «g 1.2 being constants. Thusvd ~ vt'~1dr and dvo ~ dr. Remembering that the
function £ 19 (x4, x») does not vanish at a branch point due to the regularity hypothesis
(2.4), we find that near1(a), Eq. (3.9) is approximated by

—dxl dr
FOD(xq, x2)

This shows that the zeros ¢f% (x1, x») are absorbed by the corresponding zeros of the
differential dc1, so that the Weierstrass kernel cannot be singular at the finite branch points.
If x2 has a pole of ordet near a branch point, instead, it is always possible to perform the
change of variables

(3.12)

xp = (x1 — x1(a))*x2. (3.13)

In the new coordinates;, remains finite at the branch poirt(a) and the above demon-
stration applies again.

Of course, on a Riemann surface a single pole is not allowed, so that the Weierstrass kernel
(3.3) must contain also other spurious poles both as a functioparidy;. Typically, they
appear whenever the variablas x andy1, y2 become infinitely large. A general procedure
to subtract these spurious poles while keeping the property (3.2) has been already discussed
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in Refs. [65,66]. The amplitudes of some free conformal field theories on branched covers
of P! have been constructed in.

To conclude this section, we present a beautiful formula of Weierstrass [53] to construct
a second kind differential on an hyperelliptic curve. Thus, we consider curves of the kind
(2.21), where

Pogio(x1) = Ao+ Arxa +--- + A2g+2x2g+2. (3.14)
Let us define the function:
R(x1.x) = Ao+ 3A1(x1 + x) + Apxax] + 3A3(x1 + x)x1x] + Ag(x1x))?

+3As(x1 + 2D GxD? 4 - 4 SAzera(xn + XD (rx)?
+Aggi2(x1xp)ETL (3.15)

Clearly, R(x1, x}) satisfies the property
R(x1, x) = R(x}, x1). (3.16)

Moreover, ifx; = x7, one has that

/ IR (x1, x7) 19 Pper2(x1)
R(x1, x7) = Pog12(x1), —= B (3.17)
dx1 x=x] 2 dx1
The differential of the second kind is given by
y(x1)y'(x1) + R(x1, x7)
Ty (¥1) = — L d, (3.18)

2(x1 — x7)2y(x1)y (x1)

wherey’(x1) = dy(x1)/9x1. It is easy to show using the properties (3.16) and (3.17) that
rx/l(xl) has only a pole of the second ordendipn= x} as it should be. Unfortunately, it is

not simple to extend the elegant formula (3.18) toZh)esymmetric curves, not to mention

the general plane algebraic curves of Eq. (2.17) or the even more complicated curves (2.25).

4. Generalized Weierstrass kernels

In this section, we construct analogs of the Weierstrass kernel on affine algebraic curves
defined by the system of equations (2.25). Even if it will not be strictly necessary, we suppose
to fix the ideas that the intersection of the two hypersurfaces in (2.25) is complete and gives
as a result an algebraic cur@ewhich coincides, modulo conformal transformations, with
a Riemann surfac#'.

The following two different cases can formally be treated in the same way. On one side,
x1, X2, x3 may be interpreted as coordinatesGA, so thatX is not compact due to the
absence of the points at infinity. Alternatively, the vanishing of the polynomials (2.25) can
be associated to a ramified coveringfdfas we have seen in Section 2 afids a compact
Riemann surface of genygs
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Let us consider as in the previous section two different pgintg € X. On the al-
gebraic curveC they correspond to coordinatesp) = x1(p), x2(p), x3(p) andy(g) =
v1(q), y2(q), y3(q). A possible analog of the Weierstrass kernel®is given by

3 i .
Fomr 1) = %; NJ E)(Cx)y) (x1 — y1)(xzdfly2)(X3 —3)’ (4-1)
where
Jix) = eik'% 85)(5), (4.2)
NY(x,y) = FOn y2, x3)8(x1, y2, x3) — f(x1, y2, x3)g(¥1, Y2, X3), (4.3)
N2(x,y) = f(x1, y2. y3)8(x1, X2, y3) — f(x1, X2, y3)8(x1, ¥2. ¥3), (4.4)
N3(x.y) = f(y1. X2, 3)8(y1. X2, X3) — f(y1. X2, ¥3)g(y1. X2, y3). (4.5)

HereeX denotes the completely antisymmetric tensor in three dimensions with the conven-

tion €123 = 1. We note that the variables y and the functiong’ andg enter symmetrically

in the expression of the kernel (4.1), as it should be since none of them plays a privileged

role in the definition of the algebraic curve. The symmetry under the exchanfamdg

is also related to the freedom of projecting the curve in the two possible ways shown by

Egs. (2.26) and (2.27).

Equivalent kernels can be obtained starting frEigym(x, y) and adding differentials in

such a way that the behavior near the singularity ia y remains unchanged. For instance,

exploiting the identities:
dx; dxp dx3
VAR CEEE

which are a consequence of the implicit function theorem and using the fact that the numer-

atorsN1, N2, and N2 differ each other by functions that vanishin= y, one may derive
the following kernel:

(4.6)

PJl(x,y) dxq
JIx) (1 — yD(x2 — y2)(x3— y3)’

The above kernel is less symmetric thEgm(x, y), but has a more compact expression.
In the particular case of a branched cover of a plane curve, in which the algebraic equations
(2.25) assume the form (2.29) and (2.38),x, y) is simply given by

SO, y2)8(y2, x3) 1 (4.8)
[9g(x)/0x3][8f (x)/0x2] (x1— y1)(x2 — y2)(x3 — y3) '
Let us investigate the behavior &f(x, y) nearx = y. To this purpose, it is sufficient to
expandN1(x, y) with respect toy at the pointx. At the leading order

NYx, y) ~ JH(x) AxpAxs, (4.9)

K(x,y)=

whereAx; = y; — x; is very small by hypothesis. We note that, in principle, there are also
contributions proportional tahx1 in the expansion oV 1(x, y). In order to obtain Eq. (4.9),
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Ax1 has been expressed in termsfof, and Ax, with the help of (4.6). Substituting (4.9)
in (4.7), we find thaX (x, y) satisfies the property (3.2) as desired

d

K(x,y) ~ —2—. (4.10)

X1—WN

A similar calculation forKsym(x, y) gives the result
3
1 dx,-

K ,Y) ~ = E . 411
sym()C y) 3 Xi—y ( )

i=1
In this case one should remember that not all variables;, x3 are independent due to the
relations (2.25), so that Eq. (4.11) must be worked out further. Assuming for instance that
x1 is a good local coordinate in a neighborhood of the ppinbne can solve the system
of algebraic equations (2.25) with respect to the remaining variables, so;tkatc; (x1)
for j = 2,3. In the same way; = x;(y1) for j = 2,3 in a neighborhood of, with
y1 = x1 + Ax1. AS a consequence

dx; dx;
dxj(x1) = d—x’ldxl, xj(yD) — xj(x1) ~ —d—x'iAXL i=23. (4.12)

Using the above relations in (4.11), one obtains

dx1
xX1—y1

Ksym(x, )~ (4.13)
Thus, also the kernel (4.1) has the requested behavior near the pole in

Besides the required simple polexin= y, the kernels (4.1) and (4.7) have also spurious
poles, which have to be controlled and suitably subtracted in order to construct physical
correlation functions with desired singularities. The study of these spurious poles will be
the subject of the rest of this section.

Since the structure of the kernels (4.1) and (4.7) consists in ratios of polynomizésdf
y, their possible divergences may only occur at the zeros of the denomidatoigx; —
y1)(x2 — y2)(x3 — y3) or at the infinities of the numeratoi (x, y),i = 1, 2, 3.

First of all, we consider the zeros df(x). The cases in which = 2, 3 can be treated
in an analogous way. Let(a) = (x1(a), x2(a), x3(a)), a € X, be a point orC for which
J1(x) = 0. Inx(a) the system of algebraic equations (2.25) becomes no longer invertible
with respect tor; andxs. Given a good local coordinatein a neighborhood af (a), this
implies that

x1 —x1(a) = t*, (4.14)
x2 =g+ oapth + -+, x3=pBo+ But" +---, (4.15)

where is an integer containing the integessand v as sub-factors. In Eq. (4.15), we
suppose that, andxz do not diverge in, so thatx, w, v are all positive. If not, itis always
possible to perform in Eq. (2.25) a change of variablgstz — x5, x5 similar to that

of Eg. (3.13) to make the new variable$, x; finite in a. We note that the monodromy
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properties ofr; andxz may be in general different, so thatandv need not to be equal.
Nearx (a) the relations (4.6) become

artde et tde v lar
JYwo 2 B

wherex is a function oft given by Egs. (4.14) and (4.15). At this point it is possible to
invoke the regularity condition (2.4), which assures thatr), J3(x) # 0inx = x(a).
Sinceu,v < A it is easy to see from (4.16) that the zerosJdi(x) are absorbed by
the corresponding zeros of the differentialjdAs a consequence, there are no spurious
divergences at these points.

One can also verify that there are no poles whan— y1)(x2 — y2)(x3 — y3) = 0 apart
fromthe onein(p) = y(q), which is related to the required singularitypn= ¢. Spurious
poles of this kind may in principle occur if two different poinisq € X correspond on the
algebraic curve to coordinategp) andx(q) characterized by the fact that some of their
components, but not all, coincide (for instange= y1, xo = y2 andxs # y3). The proof
that no spurious divergence arises in this case is straightforward and will not be reported here.

In conclusion, the kernels (4.1) and (4.7) diverge only at the poles of the numerators
Ni(x,y). In general, the latter are located at the points in which the variabkesd y
become very large.

(4.16)

5. Thecase of general non-hyperelliptic curves of genus four

A general non-hyperelliptic algebraic curve of genus four is given by the complete in-
tersection of a quadric with a cubic as mentioned in Section 2. In fact, putting 3 and
dg = 2in (2.24), one obtains exactly = 4. For instance, one can choose in Eq. (2.23)
G (&) as follows:

G (&1, &2, &3, £4) = E0b1 — £283, (5.1)

while F (&) is a homogeneous polynomial of degree 3. In affine coordiriates &; /&o,
i =1,2 3, F(&)andG(¢§) are replaced by

G(1, x1, x2, x3) = g(x1, X2, X3) = X2X3 — X1, (5.2)

F(1,x1, x2, x3) = f(x1, X2, x3) = x5 + h1(x1, x2)x3 + ha(x1, x2)x3 + h3(x1, x2),
(5.3)

where

i
hi(x1, x2) = Z al((i)x]{xlz, i=123, (5.4
k,1=0
k+i<3
and theaﬁ) are complex coefficients. We note that the polynonfiés, &2, £3) has been
ordered according to the different powersxgf This is just a convention which does not
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reflect any special role ofs. In the same way one could ordg(é1, &2, £3) with respect to

the powers of or x2. All necessary ingredients to construct the Weierstrass kernels (4.1)

and (4.7) are derived in a straightforward way substituting Egs. (5.2) and (5.3) in (4.2)—(4.5).
In the following, we will assume that; is a good local coordinate of the curve. The

cases in whichx; € C or x1 € P; can be formally treated in the same way. Accordingly,

we solve the system of algebraic equations

f(x1, x2, x3) = g(x1, x2,x3) =0 (5.5)

with respect toc1. 4 As a result, one obtains two multivalued functiongx1) andxa(x1).
Dueto Eq. (5.2), botha(x1) andxz(x1) share the same monodromy properties. They define
a Riemann surfac&’, constructed in terms of sheets. It is easy to check.that;) and
x3(x1) have six branches, so that; consists of six sheets glued together at the branch
lines. The computation of the resultaRtx1, x2) of the two algebraic equations (5.5) is
straightforward and gives the following plane curve equation associatEg:to

xf + h1(xq, xz)xfxz + ho(x1, xz)x1x22 + h3(xq, xz)xg =0, (5.6)

which indeed describes a curve of genus four.

Due to the peculiar role played by the variablg it is natural to consider the kernel
K (x, y) instead of the more symmetric one of Eq. (4.1). Inserting Egs. (5.2) and (5.3) in
(4.7), one obtains

K(xvy)z_

dyy [ngm, v2,%3) | vaf (v, yz,xe,)], (5.7)

(x1 — y1)J1(x) x3— Y3 X2 = y2

where we should remember that we are dealing with multivalued functipns x; (x1)
andy; = y;(y) for j = 2, 3. With respect to the general formula (4.7), in this case some
simplifications have been possible because of the particular fog(xef x2, x3). One can
check that the above kernel has the desired pole wheny; fori = 1, 2, 3. If one wishes

to study the kernel (5.7) in the neighborhood of a branch point whiéte) = 0, it is
possible to perform the conformal transformatian= x1(x2).

Letus now concentrate on the spurious divergenc&qef y). From the previous section,
we know that they may only occur at the infinities of the variables;, i = 1, 2, 3. In this
case, the situation is made simpler by the factthat1) andx3(x1) have no poles for finite
values ofx1. To show that, let us imagine that a paint X4 corresponds on the algebraic
curve to a pointey (a) wherexs has a pole of ordey:

x3(x1) ~ (x1 — x2(a)) . (5.8)
Due to Eq. (5.2), the functiom(x1) has a zero of the same order at the same point

x2(x1) ~ (x1 — x1(a))’. (5.9)

4There is no loss of generality in doing that. If one wishes to study the algebraic curve in the neighborhood of a
branch point, where; is no longer a good coordinate, it is always possible to perform a conformal transformation
and to considex; as a function of, or x3.
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Thus, in the limitx; = x1(a) the polynomialsi; (x1, x2),i = 1, 2, 3, may be replaced by
suitable constantd1, A, Az neglecting higher order terms.in — x1(a). Hence, Eq. (5.3)
is approximated by

x?? + A1x§ + Aoxz+ A3 =0. (5.10)

Clearly, the above equation has no solutiongit= co. Analogously, sinces andx; enter
in Eq. (5.5) symmetrically, it is possible to verify thet(x1) has no divergences for finite
values ofx.

To study the singularities of>(x1) andxz(x1) at infinity, it is convenient to introduce
the new variable; = xl‘l. Let us now suppose that andxz have the following behavior
nearx] = 0:

x2=oax) +---, X3 = IB(x:/L)_l_S + - (5.11)

The second relation (5.11) is again a consequence of (5.2). Substituting the ansatz (5.11) in
(5.3), itis easy to verify that the latter equation is satisfied ondy=i —1 or 0. In the first
case, there are three branchespéndxs such thatv, diverges

1
X~ — x3 ~ const (5.12)
X

70

1
If s = 0, instead, there are other three branches in whidiecomes singular

X2 ~ CONSt, X3 ~ i, (5.13)
X1
At this point, we are ready to discuss the spurious poles of the kernel (5.7). As a mero-
morphic differential inc1, K (x, y) has three simple poles i1 = 0. The latter occur in the
three branches af, andxz where Eq. (5.13) is satisfied. In each of these brandhiés, y)
has residue-3:
/
K(x,y)=—}d—x,1+-~. (5.14)
3 x;
It is easy to check that there are no other spurious singularities’iThus K (x, y) is a
differential of the third kind on¥4. Taking into account also the simple polexn= y, the
sum of all its residues vanishes as it should be on a compact surface.
To study the singularities with respect to the varialylgsis convenient to rewrit& (x, y)
in a slightly different form, obtained by expanding in (5//)y1, y2, x3) and f (x1, y2, x3)
in powers ofx3z andy,, respectively. Sincg (x) is a polynomial in its arguments of degree
3, the expansions below

3

fOLy2.x3) =)

n=1

" f(y) (x3— y3)"
0y3 n!

, (5.15)

5 In principle, one would expect the appearance of singularities also in the branches in which Eq. (5.12) is satisfied
due to the symmetry between the variablgandxz in (5.5). However, we remember that this symmetry has been
explicitly broken by the way in which the kernk{x, y) has been constructed.
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3
" f(x) (x2 — y2)"
f(x1, y2, x3) = Z afi ) (2 IyZ) (5.16)
— )CZ n:
n=1
are exact. As a consequence, inserting (5.15) and (5.16) in (5.7), we have that
P(x,y)
K(x,y) = —————dx1, 5.17
O = T 0 -y O 549
where
3 n n—1 n n—1
" f(x) (xo0 — 0 X3 —
P(x,y)=Z[y2 afi ) (x2 ):2) - fiy)( 3 ):3) ] (5.18)
= X5 n! dy3 n!

Now, we exploit the fact that the spurious divergencek 6f, y) are located at the points in
which y; = oo as the previous analysis has shown. Therefore, it is convenient to keep in the
kernel only the contributions which diverge ya = co. Using the formula L(x1 — y1) =

—(1/yD) Y2 o(x1/y1)", we find

dx

K(x.y) ~ 7 (i) [AL(y) + x1A42(y) + x2A3(y) + x3Aa(y)], (5.19)
where
— 3 3
A1) = —y; Hagavs + a5y 3, (5.20)
3 2
Y Y
A2(y) = —agy =2 —afy =2, (5.21)
Y1 Y1
©) 3
Az(y) = —agy =2, (5.22)
1
ol @2 2
Aa(y) = y1 [—agy y5 + 7y3 + 3yzh1(y1, y2) + h2(y1, y2)]. (5.23)

We notice thak (x, y) has the following behavior near the spurious poleg;ig= oco:

4
K(x,y) ~ Y o)Ay, (5.24)
i=1

where thew; (x) are holomorphic differentials. As a matter of fact, using Egs. (5.12) and
(5.13) it is easy to check that a basis of holomorphic differential&pis

dxq x10dx1
w1(x) = Jl_(x)’ w2(x) = Jl—(x)’ (5.25)
X2 dxq X3 dxq
w3(x) 710’ 4(X) 710 (5.26)

As a result, it is possible to conclude that the divergent paki ©f, y) given in Eq. (5.19)

is proportional to holomorphic differentials i This property of the kernel (5.7) will be
crucial in subtracting the spurious divergences from the amplitudes of the conformal field
theories which will be the subject of the next section.
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6. Freeconformal field theories on a general non-hyperelliptic curve of genus four

In this section, we apply the previous results to the computation of the amplitudes of
the free conformal field theories appearing in the action of bosonic strings on a general
non-hyperelliptic surface of genus foll;. These systems are well known and represent
a good way to test the generalized Weierstrass differential constructed in Section 4. Apart
from the above mentioned works in the case of hyperelliptic and non-hyperelliptic curves,
they have been studied by various authors and different methods on Riemann surfaces (see,
for instance [86—115]).

First of all, we discuss the case of fermiomiec systems with integer spih = 1, 2.

In isothermal coordinateg, p where the metric becomes conformally flat, their action is
given by

Spe= | d?pbac, (6.1)
p)

where dp = idp A dp andd = 3/9 p. The fieldsh are meromorphic tensors dfy with
A lower indices, while the fields are characterized by— 1 upper indices. From Eq. (6.1),
one obtains the following equations of motion:

db = dc = 0. (6.2)

We start with the case = 2. We denote witlp,,, u = 1, ..., 9, the holomorphic quadratic
differentials which represent a basis of non-trivial solutions of (6.2p1lf..., p,, and

q1, .. ., gn are points inX, the non-vanishing correlation functions of the: systems
m n
Ga(pi q) = <1‘[b(pa>]"[c(qa)> (6.3)
a=1 =1

should satisfy the relatiom —n = 3g —3=09.
The zeros and poles 6b(p; g) are determined by the physical properties of the fields.
To specify their locations and orders it is convenient to introduce the conceldtisor.
Let A[T] denote the divisor of a given meromorphic ten¥@p) on the Riemann surface.
If T has zeros ap = p; of orderpu;, i = 1,..., mzerosand poles of ordep; at p = g,
J =1, ..., npoles thenA[T] can be written as follows:

Mzeros poles

AITT =) wipi— Y vig;. (6.4)
i=1 j=1

The correlation function (6.3) is a tensor with two lower indices in each varjghle =
1, ..., m and the following divisor:

Ap G =) pur— Y ap. (6.5)
B'=1

o' =1 =
o' Fo B'#B
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With respect tazg, insteadGo(p; ¢) is a vector with an upper index and divisor

n m
AgglG2 =Y ap = ) par (6.6)
B'=1 a’=1
B'#B o' F

To construciGz(p; g) explicitly, we represent’, as a ramified coverin@4 associated to
the system of algebraic equations (5.5) treated in the previous section. We begin by noting
that a meromorphic tensdr(p) with A indices on the Riemann surfacg, corresponds
x1(p) € P1. A pole or a zero of" (p) in p = ¢ corresponds to a pole or a zero®fx(p))
of the same order in(p) = y(q).
A basis of independent holomorphic quadratic differentials is given by

dy; \? dr; \? dx; \?
¢wm=( “), ¢Aﬂ=n< ”>, ¢%ﬂ=m( “), 6.7)

J1(x) J1(x) J1(x)
_ dxq 2 _(x dxq 2 ([ x2 dx1 2
¢a(x) = x3 (Jl(x)> , o ¢s5(x) = (Jl—(x)> , Pe(x) = <J1—(x)> ) (6.8)

2

x3dxq 2 dxy
¢7(x) = <]1—(x)> , ¢g(x) = x1x2 (]1—(x)> ,

Clearly, a quadratic differential of the kingho(x) = xox3(dx1/J1(x))2 would not be
independent due to Eq. (5.2).
It is also easy to check that the following quadratic differential:

dxq 2
Po(x) = x1x3 (]1_(x)> .

(6.9)

der \2[ x3f(y1, y2, x3) y2f(x1, y2, x3)
K(x,):—( )[ + 6.10
2y 1) [Gi—yDGa—ya) | 1—yDG2—y2) (6.10)
has only a simple pole at the point = y;, i = 1,2, 3. In fact, K2(x, y) is obtained

multiplying together the Weierstrass kernel (5.7) and the holomorphic differest{al
of Eqg. (5.26). The zeros of the latter cancel exactly the polek @f, y). Indeed, since
JY(x) = (3f/8x2) — x1(3f/0dx3) and f is a polynomial of degree 3 inz, we have that
J1(x) ~ —(1/x") at infinity in the three branches in which Eq. (5.13) is satisfied.

At this point we are ready to write the correlation functions ofithesystems with. = 2
onCy:

G2(p; q)
K2(x(p1), y(q1) -+ K2(x(p1),y(q1) ¢1(x(p1)) --- do(x(p1))
= det

Ko(x(pm), ¥(q1) -+ K2(x(pm). ¥(gn)) d1(x(pm)) -+ Po(x(pm))
(6.11)
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Due to the properties of determinants, the right-hand side of the above equation has the
desired simple zeros whenewg(p,) = x;(py), o, &’ = 1,...,m andy;(gg) = yi(gp),
B.B =1,....,n,i =12 3. Moreover, all the poles d¥»(p; q) are simple and occur at
the points in whichy; (po) = yi(gp)-

In principle, there could be also spurious poles due to the factkhat, y) diverges
when the variable becomes very large. However, from what it has been discussed in the
previous section, it is easy to realize tl&t(x, y) has the following behavior in; = oc:

4

Ka(x,y) ~ Y wi(0)Ai(y), (6.12)

i=1
where the functionsl; have been defined in Eq. (5.24) and diverge when> co. Terms
of the form (6.12) consist in a linear combination of quadratic differentials, which does not
contribute in the determinant of Eq. (6.11).
Let us now treat the case= 1. On the Riemann surfacg, the non-vanishing correla-

tions functions are given by

G1(p.q) = <]_[b(pa)]_[6(qa)>, (6.13)
a=1 B=1

wherem —n = g—1 = 3. Again, the poles and zeros of the above correlator are determined
by the physical properties of thie—c fields. The divisors off1(p, ¢) are similar to those
of G2(p, q) with simple zeros whenever, = p, Or g3 = pg and simple poles when
Pa =g Witha,e'=1,....m, 8,8 =1,...,n.
The explicit construction o1 (p; ¢) on the ramified covering4 goes as follows. First
of all, we define the differential

Vy@y(g)x(P) = K(x(p), ¥(q)) — K(x(p), y(g"). (6.14)

This is a differential of the third kind in(p), with two simple poles inc(p) = y(g) and
x(p) = y(¢') and residues-1 and—1, respectively. The spurious polesifx(p), y(g))
in x1 = oo are canceled against the analogous pold§ @f(p) — y(g’)). At this point it is
possible to write the expression@f(p; g):

Gi(p; q)

Vyqnyg) @ (PD) - Vygu_nygn X (p1) w1(x(p1) -+ wa(x(p1))

= det : : : :

Vy(g0y(gn) X(Pm)) -+ Vy(gu_0)y(gn) X (Pm)) @1(x(pm)) -+ @a(x(pm))
(6.15)

As in the case. = 2, Eq. (5.24) implies the absence of spurious poles inythiariables
in (6.15).

To conclude our list of conformal field theories which appear in bosonic string theory,
we treat the scalar fields with action

S= | d’paxax. (6.16)
P
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All the correlation functions of the scalar fields are obtained once the following correlator
is known:

Itturns out thatG (p; ¢, ¢’) is acanonical differential of the third kindniquely determined
by the following properties:

1. G(p; q,q") has only two simple poles ip = ¢ andp = ¢’ with residues+1 and—1,
respectively.

2. The integral function/ G(p; ¢, ¢’) has purely imaginary periods when transported
around the 2 = 8 non-trivial homology cycles oF}y.

On the algebraic curv€s the Green function (6.17) can be written as a vector field
Gx(p): y(@), y(q"), wherex(p) = x1(p), x2(p), x3(p), etc. G(x(p); y(q), y(¢')) co-
incides to the third kind differential, ), (x(p)) defined in Eq. (6.14) up to a linear
combination of holomorphic differentials, which is fixed by requirement (2). In practice,
since it is hard to deal with integrals over homology cycles in the case of algebraic curves,
it is convenient to formulate this requirement in terms of surface integrals. Indeed, it is pos-
sible to show that (2) is satisfied if and onlyGf(x(p); y(g), y(¢")) fulfills the following
Riemann bilinear identities:

[C Gx(p)y(@,y@) Awi(x(p) =0, i=1..,4 (6.18)
4

The surface integrals ovély in (6.18) can be interpreted as integrals in a three-dimensional
complex space concentrated in the solutions of Eq. (5.5) (see Appendix A). At this point
we are able to write the Green functiégh(x(p); y(g), y(¢")) in terms of the third kind
differential (6.14) and of the holomorphic differentials (5.25) and (5.26)

Gx(p); y(@). y(¢"))

Vy@vgH)@®(P)  o(x(p)) - walx(p))
fc4"y(q)y(q’) N @1 fc4601 ANwy - fc4w1 A ©z

— det , (6.19)
fc4"y(q)y(q’) N g fc4w4 AWy - fc4w4 Ny

Itis easy to see that the above differential of the third kind satisfies requirement (1) and the
relations (6.18), which are equivalent to (2).

7. Conclusions

In Section 4, an analog of the Weierstrass kernel has been constructed on non-plane al-
gebraic curves associated to the vanishing of two polynonjfiadsid g. The freedom of
adding linear combinations of differentials which do not change the behavior=iny
has been exploited in order to get two different, but equivalent, versions of generalized
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Weierstrass kernels. The first versidfaym(x, y), given in (4.1), is symmetric with re-
spect to the variables, y and with respect to the exchange ffvith g. This is in agree-
ment with the fact that neither the coordinates nor the functiprasd ¢ play a special

role in the equations which define the curve. The alternative kekrie| y) of Eq. (4.7)

has the advantage to have a more compact expression in compari&gpi@, y), but

part of the symmetry under coordinate permutations is lost. If the branched cover of an
algebraic curve is considered, the generalized Weierstrass Ke(mely) has the simple

form (4.8).

Furthermore, it has been verified that both ker&dgn(x, y) andK (x, y) are third kind
differentials with a simple pole in the desired pain& y of the curve, in agreement with
property (3.2), which characterizes the analogs of the Cauchy kernel on Riemann surfaces
[3]. In Section 4, it has also been proved that spurious singularities may only occur at the
points in which one or more of the components of the coordinat@sy approach infinity.

In the absence of a general algorithm to treat these spurious singularities like that developed
in the case of plane curves in [65,66], the terms to be subtracted in order to get the desired
correlation functions should be derived separately for any given polynorfiatelg. The
example of a general non-hyperelliptic curve of genus four has been explicitly worked out
and the amplitudes of bosonic string theory have been computed (see Egs. (6.11), (6.15)
and (6.19)).

Finally, nothing has been said about non-hyperelliptic Riemann surfaces obtained from
the intersection of — 1 hypersurfaces iR" with n > 3. However, itis clear from Egs. (4.1)
and (4.7) what should be the structure of the generalized Weierstrass kernel on these curves.
The Jacobiang’ (x) should be replaced by analogous Jacobians containing derivatives of
then — 1 polynomialsfi, ..., f,—1 with respect to any possible: — 1)-dimensional
subsets of the coordinates. The numerafgféx, y) will contain a sum of products of
polynomials f1, f2, ..., fu—1, in which the dependence on the variahigs. . ., x, and
y1, ..., ¥n IS chosen in such a way that the spurious poles in the denominator given by
the factor[]’_;(x; — y;) are canceled, so that only the desired singularity;in= y;,
i=1,...,nremains.
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Appendix A. Surfaceintegralsover Cy

In this section, we show that the surface integrals appearing in Egs. (6.18) and (6.19) can
be expressed as integrals in a three-dimensional complex space in the presence of Dirac
s-functions which impose the constraints (5.5). We suppose here that®, but the result
is valid also for a compact curve, in which ca&has to be replaced lﬂg and the non-flat
metric of P; should be taken into account.
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Let us consider a surface integral of the kind

I :/c4p’ (A1)

wherep(x(p)) is a(1, 1)-form. In componentg (x(p)) = px,5, (x(p)) dx1 A di1 and

I= ) d2x1(p) pxyiy (x1(P), x2(p), x3(p)).- (A.2)
4

SinceCy is a curve associated to the system of algebraic equations (5.5), it is possible to
rewrite the integral (A.1) as follows:
{0
X2 X3

2
(L 9 pun(x(p),  (A3)

/C 4d2x1(p)pxlil(x(l’)) = /CsdGX

where &x is the volume element i3,

af g
dxp  Jdx2

(7 %) = det , (A.4)
X2 X3 af  0g
0x3 0x3

and the Diracs-function s (f, g) has been defined using the formulas of Gel'fand and
Shilov [116]. After performing the change of variables x3 — f, g, this distribution
becomes an usual four-dimensiodglinction

937+ 3,05 1
4 . f gYg
8 (f 8) = < 52 ) T (A.5)

Now let us apply to Eq. (A.3) the inverse transformation which brings back to the old
coordinates. This can be done using the relations

af (gxz axs — 8x3 axg)»

B gngxg - gngxz
1
af

= xax_xax- A.6
' gxzfX3_gX3fx2(f3 2 f2 3) ( )

Substituting the result in Eq. (A.3), we obtain an explicit expressiod of terms of
three-dimensional complex integrals

/ Px1(p)prssy (2(p))
Cy

1 6 2 2
= ﬁ / d xle)El(x(p))“(gxzaxg - gx3ax2)| + I(fxgaxz - foaXS)I ] |f|2 + |g|2‘

(A7)
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