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Abstract

On plane algebraic curves the so-called Weierstrass kernel plays the same role of the Cauchy
kernel on the complex plane. A straightforward prescription to construct the Weierstrass kernel has
been known for more than one century. How can it be extended to the case of more general curves
obtained from the intersection of hypersurfaces in ann-dimensional complex space? This problem
is solved in this work in the casen = 3. As an application, the correlation functions of bosonic
string theories are constructed on a canonical curve of genus four. © 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Algebraic curves andn-sheeted branched covers on the projective lineP1 provide an
explicit representation of abstract Riemann surfaces. Besides being an active field of research
in mathematics [1–9], for more than a decade, they have been also successfully applied in
several different topics of theoretical and mathematical physics.2
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All the above physical applications involve only plane affine algebraic curves. Moreover,
most of the works are further restricted to the particular case of hyperelliptic curves. The rea-
son is that the latter are very well known in mathematical literature. An invaluable source of
hyperelliptic formulas can be found for instance in the original Weierstrass lecture notes [53].
As an example, we will give in Section 3 the prescription of Weierstrass for differentials of
the second kind. Already in the case of the so-calledZn symmetric curves, which are the most
straightforward generalization of hyperelliptic curves, superstring calculations like those of
[10–22] are impossible, because it has not yet been understood how to construct sections with
half-integer spins or chiral determinants [54–56] of free fermions with given spin structures.
An exception is provided by more exotic fermions with 1/n characteristics, which have been
solved in [57]. Also neglecting fermions and sticking to bosonic string theory, the computa-
tion of the partition function remains a very complicated task on non-hyperelliptic algebraic
curves.

The explicitness of algebraic curves is indeed of great advantage in understanding the
physical aspects of theories like superstrings whenever Riemann surfaces are involved,
but, on the other side, it is also the main responsible of the above-mentioned difficulties.
Using different approaches, like for instance theta functions, the problems are somewhat
hidden, but they reappear in other forms, in particular when one needs to explore a limited
portion of the moduli space of Riemann surfaces such as that spanned byZn symmetric
curves.

A considerable effort to understand conformal field theories on plane algebraic curves and
to find new applications of non-hyperelliptic curves has been made by the author over the past
ten years, partly in collaboration with Sobczyk and Urbanik. In particular, the applications
of branched covers ofP1 have been investigated, in which the curves are projected on the
complex projective line. Every compact Riemann surface can be represented in this way.
Branched coverings are also closely related to affine curves in the two-dimensional complex
planeC2. The bosonic string theories on a general non-hyperelliptic algebraic curve of genus
three have been treated in Refs. [58,59], computing the correlation functions of the theory
and its partition function, the latter up to a theta constant. Moreover, the partition function
has been exactly derived onZ3 symmetric curves in [59]. Even in this case, where the
chiral determinants are well known [60], the calculation of the partition function is not
simple. Indeed, one has still to use the Rauch’s variational method [61] combined with the
Beilinson–Manin formula [62] in order to determine the explicit form of the period matrix.
The same variational approach of Rauch has been exploited in [63,64] to rederive in an
elegant way the Thomae formulae of Bershadsky and Radul [60] onZn symmetric curves.

Despite the difficulties of evaluating the partition functions of conformal field theories,
algebraic curves become very convenient in the construction of meromorphic tensors with
poles and zeros of given order at given points, like for example the correlation functions
of the free fields appearing in the bosonic string action [54]. On general plane algebraic
curves, this problem has been solved for theb–c systems in [65,66]. The more complicated
case of scalar fields has been treated recently in [67]. The two and four-point amplitudes of
the bosonicβ–γ systems have instead been derived in [68]. Other useful formulas can be
found in [69–71].

Plane algebraic curves are described by complex coordinates which, depending on the in-
terpretation, can be multivalued functions on the complex planeC or on the complex sphere
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P1. They change their branches at the branch points according to certain monodromy prop-
erties. For this reason, it was thought in a first moment that meromorphic tensors on an
algebraic curve could be easily expanded in terms of the solutions of the related Riemann
monodromy problem (see, e.g. [72]). However, this approach has encountered outstand-
ing obstacles in its concrete realization. Up to now, the best way to expand meromorphic
tensors and to handle their singularity structure is provided by the generalized Laurent
series of [65,66]. To explain their usefulness with an example, one should recall that the
main building block in the construction of the correlation functions ofb–c systems and
scalar fields is the Weierstrass kernel [53]. The latter is a differential of the third kind
which, on the curve, plays the same role of the Cauchy kernel on the complex plane. It
is characterized by a simple pole in an assigned point and can be explicitly derived with
an algorithm due to Weierstrass. However, besides the desired pole, there are also several
spurious singularities, which should be eliminated by subtracting suitable counterterms
[3]. A general procedure for this subtraction, which in principle strongly depends on the
form of the curve, has been derived expanding the Weierstrass kernel in generalized Lau-
rent series. As well, an operator formalism on plane algebraic curves has been established
in [65,66].

If the plane curve is regarded as a Riemann surface, the generalized Laurent series can
be considered as a multipoint generalization of the Krichever–Novikov bases [73,74] much
in the spirit of Dick et al. [75,76]. On the other side, the modes entering in the expansion of
meromorphic tensors consist in a finite set of tensors which are multivalued inC (orP1). The
latter have a deeper significance than modes defined on abstract Riemann surfaces, since
they may be interpreted as correlators of exotic conformal field theories on the complex
plane (or sphere). Theories of this kind should be both invariant under the Virasoro group
of conformal transformations and under the monodromy groupM of the original curve.
The amplitudes of the class of exotic conformal field theories corresponding toM = Zn
have been constructed in [77] in terms of free bosonizedb–c systems. Due to the above
mentioned difficulties in computing partition functions, instead, only theN -point functions
with N > 2 can be derived ifM is non-Abelian. The caseM = Dn has been explicitly
worked out in [78]. In this way, a concrete realization of the more general program on
holonomic quantum field theories developed by Sato et al. [79–83] has been achieved. The
connections between generalized Laurent series and solutions of the Riemann monodromy
problem have been partly explored in [78]. Some glimpses of non-commutativity in string
theory have been anticipated in [84].

Despite of the above progress in understanding conformal field theories, plane algebraic
curves suffer of some limitations. To obtain for instance general non-hyperelliptic Riemann
surfaces of genusg > 3, they are not powerful enough and it is necessary to consider
algebraic curves in the complex projective spacePg−1. Moreover, the smallest dimensional
space in which a curve may be smoothly embedded isP3. In attempting to treatb–c systems
and scalar fields on non-plane curves, an immediate difficulty arises, because the analog of
the Weierstrass kernel is not known. As explained before, this kernel is a crucial ingredient in
the derivation of theN -point correlations functions and of any other meromorphic tensor.
This problem is solved here in the particular case of algebraic curves inP3. A simple
expression of the generalized Weierstrass kernel on these curves is obtained and, as an
application, the correlation functions of theb–c systems and of the scalar fields are computed
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on a canonical curve of genus four. Let us notice that curves inP3 include the interesting
subset containing the branched covers of Riemann surfaces.

Since it is too difficult to work on a projective variety, the generalization of the Weierstrass
kernel has been derived in local form after restricting oneself to local open sets ofP3, where
it is possible to use Euclidean coordinates. This is equivalent to consider affine algebraic
curves inC3. Of course, affine algebraic curves are non-compact, but it is still possible to
relate them to compact Riemann surfaces by taking into account also the point at infinity
and hence considering the extended complex planeC ∪ ∞ ≡ P1. A similar strategy has
been followed in the construction of the standard Weierstrass kernel, defined in [53] on
affine algebraic curves inC2 or on a branched cover ofP1.

The material presented in this paper is divided as follows. Section 2 consists in a brief
and elementary introduction to the concept of algebraic curves. In Section 3, the derivation
of the standard Weierstrass kernel on plane curves is reviewed and its main properties are
discussed. A formula of Weierstrass to build a differential of the second kind on hyperel-
liptic curves is also presented. It is useful to recall this formula because it seems to have no
track in the modern literature, but it is very important whenever current–current interactions
between scalar fields have to be taken into account (see, e.g. [33–41,71]). Section 4 contains
the derivation of the generalized Weierstrass kernel and a discussion of its main properties.
In general, we have been able to show that spurious poles can only appear at points in which
the coordinates describing the algebraic curve inC3 become infinitely large. In Section 5,
we treat the particular case of a canonical curve of genus four in detail. As an application, the
correlation functions of theb–c systems and of the scalar fields are computed at genus four
in Section 6. These theories have been already studied using several different approaches, so
they provide a good testing ground for the generalized Weierstrass kernel of Section 4. Sur-
face integrals over algebraic curves are expressed as integrals inC3 in the presence of Dirac
δ-functions in Appendix A. The final comments and conclusions are presented in Section 7.

2. Riemann surfaces as algebraic varieties

LetPn denote the complex projective space parameterized by coordinatesξ = ξ0, . . . , ξn.
A homogeneous polynomialF(ξ) of degreed defines an algebraic hypersurface onPn as
the locus of the pointsξ ∈ Pn satisfying the relation

F(ξ) = 0. (2.1)

The hypersurfaces are called quadrics ifd = 2, cubics ifd = 3, quartics ifd = 4, etc. A
projective algebraic varietyV is a subset ofPn characterized as the intersection of many
hypersurfaces

V = {ξ ∈ Pn|F1(ξ) = · · · = Fk(ξ) = 0}, (2.2)

whereF1, . . . , Fk, k ≤ n, represent a set of homogeneous polynomials of degreed1, . . . , dk,
respectively. Ifk = n− 1,V describes aprojective algebraic curveC in Pn. A pointp ∈ V
is smooth[85] if the Jacobian matrix

J =
[
∂(F1, . . . , Fk)

∂(ξ0, . . . , ξn)

]
(2.3)
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has

rank[J ] = k. (2.4)

Closely related to projective algebraic varieties are theaffine algebraic varieties:

V0 = {x ∈ Cn|f1(x) = · · · = fk(x) = 0}, (2.5)

f1, . . . , fk are polynomials with complex coefficients andx = x1, . . . , xn denotes a set of
variables in then-dimensional complex spaceCn. The definition of smooth points on affine
varieties is analogous to that of smooth points on projective varieties.

It is often convenient to study projective varieties on local open patches ofPn, where it
is possible to use Euclidean coordinates. For instance, forσ = 0, . . . , n, one may identify
Cn with the following open subsets ofPn [85]:

Uσ = {[ξ0, . . . , ξn] ∈ Pn|ξσ �= 0} (2.6)

via the homeomorphismφ : Uσ → Cn:

φ[ξ0, . . . , ξn] =
(
ξ0

ξσ
, . . . ,

ξσ−1

ξσ
,1,

ξσ+1

ξσ
, . . . ,

ξn

ξσ

)
(2.7)

with inverse

(x1, . . . , xn) → [x1, . . . , xσ ,1, xσ+1, . . . , xn]. (2.8)

To simplify the notations, we will consider hereafter only the caseσ = 0. In doing that
there is no loss of generality, since none of the variablesξ1, . . . , ξn plays a privileged role
in the present context. Clearly, upon the identifications

x1 = ξ1

ξ0
, . . . , xn = ξn

ξ0
, (2.9)

fa(x1, . . . , xn) ≡ Fa(1, x1, . . . , xn), a = 1, . . . , k, (2.10)

the restriction of a projective varietyV on U0 is equivalent to an affine variety onCn

associated to the system of equations

fa(x1, . . . , xn) = 0, a = 1, . . . , k. (2.11)

In the special casek = n − 1, a projective curve and the affine curve related to it via the
homeomorphism (2.7) differ only by a finite number of points “at infinity”. The latter are
determined by the conditionsF1 = · · · = Fn−1 = ξ0 = 0, in whichφ is no longer defined.
To show that, we consider a projective algebraic curve

C = {ξ ∈ Pn|F1(ξ) = · · · = Fn−1(ξ) = 0}. (2.12)

Since theFa are homogeneous polynomials of degreeda , a = 1, . . . , n − 1, they can be
written as follows:

Fa(ξ) =
da∑

i1,...,in=0

(ξ1)
i1 · · · (ξn)in(ξ0)da−(in+···+i1). (2.13)
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If ξ0 = 0, the system of algebraic equations definingC is trivial unless the condition
da − (in + · · · + i1) = 0 is fulfilled. Thus, the points on the curve corresponding toξ0 = 0
are given by the residual system of equations

da∑
i1,...,in−1=0

(ξ1)
i1 · · · (ξn−1)

in−1(ξn)
da−(in−1+···+i1) = 0 (2.14)

for a = 1, . . . , n− 1. The above relations describe the intersection ofn− 1 hypersurfaces
in Pn−1, which, by Bézout theorem, contains a finite number ofd1, d2, . . . , dn−1 common
points as desired.

Algebraic curves are particularly important in the study of compactRiemann surfaces.
The simplest representation of a Riemann surfaceΣg of genusg is in terms ofplane
projective algebraic curves, or hypersurfaces inP2 associated to a single algebraic equation
of the kind

F(ξ0, ξ1, ξ2) = 0. (2.15)

A plane curve is saidnon-singularor regularprovided the condition below is never verified

F = ∂F

∂ξ0
= ∂F

∂ξ1
= ∂F

∂ξ2
= 0. (2.16)

Modulo conformal transformations, any compact Riemann surface coincides with a plane
projective algebraic curve.

A plane curveC can be projected from a pointp /∈ C onto a complex lineL in P2,
which does not containp. After a linear change of coordinates one may takep = [0,0,1]
andL = {ξ ∈ P2|ξ2 = 0}. The result of the projection is a representation of the Riemann
surface as abranched cover(or n-sheeted covering) of P1, whose points are given by the
zeros of the complex polynomialf (x1, x2) = F(1, x1, x2) in the Euclidean coordinates
x1 = ξ1/ξ0 andx2 = ξ2/ξ0. Solving the equation

f (x1, x2) = 0 (2.17)

with respect tox2, one obtains a multivalued functionx2(x1) of x1 ∈ P1. The finitebranch
pointsof x2(x1) satisfy the relation

f (x1, x2) = f (0,1)(x1, x2) = 0, (2.18)

where we have used the notation

f (m,n)(x1, x2) ≡ ∂m

∂xm1

∂n

∂xn2
f (x1, x2). (2.19)

Starting from a multivalued function, a Riemann surfaceΣg can be constructed in terms
of sheets and cross-cuts. In analogy with Eq. (2.16), a cover ofP1 is non-singular if the
following identities are never satisfied simultaneously:

f = ∂f

∂x1
= ∂f

∂x2
= 0. (2.20)
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The double-sheeted coverings ofP1, orhyperelliptic curves, have very special properties
with respect to the other curves. Their polynomial equation can always be reduced to the
following one:

x2
2 = P2g+2(x1), (2.21)

whereP2g+2(x1) is a polynomial of degree 2g + 2 in x1 with complex coefficients. Ex-
ploiting the groupSL(2,C) of automorphisms of the sphereP1, the number of independent
coefficients reduces to 2g − 1. Since a general Riemann surface of genusg > 2 depends
on 3g − 3 complex parameters, called themoduli, not all Riemann surfaces can be hyper-
elliptic. As a matter of fact, hyperelliptic curves form only a subset of dimension 2g− 1 in
the moduli space [1]. On the other side, plane algebraic curves of genusg ≥ 3 may be also
non-hyperelliptic, but the number of independent parameters which is possible to accom-
modate in the defining polynomialF(ξ) of Eq. (2.15) is less than 3g − 3 wheng > 3. For
this reason, in order to construct general non-hyperelliptic Riemann surfaces, one usually
considerscanonical curvesembedded inPg−1.

A canonical mapϕ from a Riemann surfaceΣg to the projective spacePg−1 can be
established with the help of a basis of holomorphic differentialsω1, . . . , ωg on Σg as
follows:

ϕ : p ∈ Σg → [ω1, . . . , ωg] ∈ Pg−1. (2.22)

If Σg is a general non-hyperelliptic Riemann surface,C = ϕ(Σg) is called a canonical
curve. For instance, a canonical curve of genusg = 3 is a plane projective algebraic curve
of degree four. The canonical curve withg = 4 is instead given by the complete intersection
of a quadric and a cubic inP3. Forg = 5, the canonical curve is a complete intersection of
three quadrics inP4, etc. A more detailed classifications of canonical curves together with
a thorough discussion of some exceptional cases can be found in [4].

Here, we will limit ourselves to algebraic curves inP3, which is the smallest dimensional
projective space in which a curve can be smoothly embedded. In fact, smooth embeddings
are not possible inP2, so that plane algebraic curves are affected by singularities at isolated
points.3 Let F(ξ) andG(ξ), ξ = ξ0, ξ1, ξ2, ξ3 be two homogeneous polynomials of de-
greesdF anddG, respectively, whose zeros define two hypersurfaces inP3. We are mainly
interested in situations in which the intersection of the two hypersurfaces iscomplete, i.e.,
they meet in a single curveC, whose points are given by the following system of algebraic
equations:

F(ξ0, ξ1, ξ2, ξ3) = G(ξ0, ξ1, ξ2, ξ3) = 0. (2.23)

We also assume that all the points ofC are smooth. The genusg of C is then given by

2g − 2 = dF dG(dF + dG − 4). (2.24)

Supposing thatξ0 �= 0 and using the mapping (2.7), we obtain the affine algebraic variety

3 However, a curveC in P3 may always be projected inP2 in such a way that the resulting plane algebraic curve
has only ordinary double points.
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in C3 associated to the polynomial equations

f (x1, x2, x3) = g(x1, x2, x3) = 0. (2.25)

Apart from the exceptional cases described in [4], the above relations describe the complete
intersections of two hypersurfaces inC3. One may also viewf (x) andg(x) as polynomials
of degreesm ≤ dF andn ≤ dG, respectively in the variablex3. Eliminating the latter, the
resultantR(x1, x2) is a polynomial inx1 andx2 of degreemnand the equation

R(x1, x2) = 0 (2.26)

represents the projection of the curve (2.25) onC2. Let us notice that with respect to the
case of plane curve, this projection is not unique. For instance, it is possible to eliminate
from (2.25) the variablex2 instead ofx3. In the latter case, one obtains a different resultant
R′(x1, x3) and a different projection ontoC2:

R′(x1, x3) = 0. (2.27)

To (2.25) one can also associate a compact Riemann surfaceΣg of genusg constructed as
a ramified covering ofP1. For example, in the neighborhood of a point where the Jacobian

J 1(x) = ∂f (x)

∂x2

∂g(x)

∂x3
− ∂g(x)

∂x2

∂f (x)

∂x3
(2.28)

is different from zero,x1 ∈ P1 becomes a good local coordinate and it is possible to
solve the system of algebraic equations (2.25) with respect tox2 andx3. In this way, one
obtains two multivalued functionsx2(x1) andx3(x1), whose analytic continuation on the
complex lineP1 defines a Riemann surface. The ramification points are those in which the
conditionJ 1(x) = 0 is satisfied. We stress again the difference with respect to plane curves,
because now there are two possible representations ofΣg in terms of branched covers of
P1, corresponding to Eqs. (2.26) and (2.27).

Finally, we show that Eq. (2.25) includes the branched covers of Riemann surface as a
particular sub-case. Indeed, let us consider a compact Riemann surface represented as a
branched cover ofP1 associated to the vanishing of a polynomial

f (x1, x2) = 0. (2.29)

Any Riemann surface of genusg can be mapped into a branched cover of this kind in
a limited region of its moduli space. Solving Eq. (2.29) with respect tox2, the Riemann
surfaceΣg is parameterized as a curveC2 with coordinates(x1, x2(x1)). Starting from such
coordinates it is still possible to realize a branched coverΣ̃ of Σg by requiring that

g(x2, x3) = 0. (2.30)

3. The Weierstrass kernel

The Cauchy kernel

KC(x1, x2) = dx1

x1 − x2
(3.1)
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plays a fundamental role in the construction of the amplitudes of conformal field theories
on the complex planeC. This kernel has the following two properties [3]:

1. As a function ofx1, the kernel is a meromorphic differential with two simple poles in
x1 = x2 and inx1 = ∞. The residues are+1 and−1, respectively.

2. As a function ofx2, the kernel is a meromorphic function with a simple pole inx2 = x1
and a single zero inx2 = ∞.

A meromorphic function with a single pole cannot exist on a compact two-dimensional
manifold. For this reason, usually it is only required that an analogK(p, q)dp of the
Cauchy kernel on a Riemann surfaceΣg should have the following asymptotic behavior in
a neighborhood of the pointq [3]:

K(p, q) ∼ dp

p − q
+ A(p, q), (3.2)

whereA(p, q) is finite atp = q.
A kernel with the above property can be constructed onn-sheeted coverings ofP1 using

a well-known algorithm of Weierstrass [53]. To this purpose, let us consider a Riemann
surfaceΣg represented as the locus of points defined by Eq. (2.17). Solving this equation
for x2, one obtains a multivalued functionx2(x1), while x1 is a d-degree mappingx1 :
Σg → P1 from the Riemann surface to the projective sphereP1. Any pointp ∈ Σg is in a
1–1 correspondence with a point on the branched coverx(p) ≡ x1(p), x2(x1(p)).

Let us put nowy(q) ≡ x1(q), x2(x1(q)), whereq �= p. Then an analog of the Cauchy
kernel on the branched cover is the following Weierstrass kernel:

KW(x, y) = f (y1, x2)

(x2 − y2)f (0,1)(x1, x2)

dx1

x1 − y1
. (3.3)

To study its behavior in the limitx1 → y1, one can expandf (y1, x2) in series of Taylor
near the pointx2 = y2:

f (y1, x2) ∼ f (y1, y2)+ f (0,1)(y1, y2)(x2 − y2)+ · · · . (3.4)

Sincef (y1, y2) = 0, it is clear that the Weierstrass kernel satisfies requirement (3.2)

KW(x, y) ∼ dx1

x1 − y1
. (3.5)

The next term in the Taylor expansion gives in fact a contribution proportional to

A(x1, y1) = f (0,2)(y1, y2)f
(1,0)(x1, x2)

f (0,1)(x1, x2)
dx1, (3.6)

which is finite whenx1 = y1.
One should also consider those pointsp �= q ∈ Σg which, on the branched cover, corre-

spond to coordinatesx(p) andy(q) such thatx1(p) = x1(q) andx2(x1(p)) �= x2(x1(q)).
In this case, there is no spurious pole in the Weierstrass kernel despite the presence of the
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factor(x1 − y1)
−1. As a matter of fact, expanding the functionf (y1, x2) in series of Taylor

in y1:

f (y1, x2) = f (x1, x2)+ f (1,0)(x1, x2)(x1 − y1)+ · · · , (3.7)

and substituting in (3.3), one obtains

KW(x, y) ∼ f (1,0)(x1, x2)

(x2 − y2)f (0,1)(x1, x2)
dx1, (3.8)

which is finite becausex2 − y2 �= 0 by hypothesis.
One may also check that the Weierstrass kernel has no spurious poles at the branch points

if the curve is regular. To this purpose it is possible to exploit the relation

dx1

f (0,1)(x1, x2)
= dx2

f (1,0)(x1, x2)
, (3.9)

which is a consequence of the implicit function theorem [85]. Let us now consider a branch
point x1 = x1(a) of multiplicity ν, whereν is an integer anda ∈ Σg. We suppose for the
moment thatx2(x1(a)) is finite. Near the branch point we choose a good local coordinatet

such that

x1 − x1(a) = tν . (3.10)

Sincex2(x1(a)) is not divergent, its approximate expansion in powers oft will look as
follows:

x2 ∼ α0 + α1t + α2t
2 + · · · (3.11)

with α0,1,2 being constants. Thus dx1 ∼ νtν−1 dt and dx2 ∼ dt . Remembering that the
functionf (1,0)(x1, x2) does not vanish at a branch point due to the regularity hypothesis
(2.4), we find that nearx1(a), Eq. (3.9) is approximated by

dx1

f (0,1)(x1, x2)
∼ dt. (3.12)

This shows that the zeros off (0,1)(x1, x2) are absorbed by the corresponding zeros of the
differential dx1, so that the Weierstrass kernel cannot be singular at the finite branch points.
If x2 has a pole of orderk near a branch point, instead, it is always possible to perform the
change of variables

x′
2 = (x1 − x1(a))

kx2. (3.13)

In the new coordinates,x′
2 remains finite at the branch pointx1(a) and the above demon-

stration applies again.
Of course, on a Riemann surface a single pole is not allowed, so that the Weierstrass kernel

(3.3) must contain also other spurious poles both as a function ofx1 andy1. Typically, they
appear whenever the variablesx1,x2 andy1,y2 become infinitely large. A general procedure
to subtract these spurious poles while keeping the property (3.2) has been already discussed
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in Refs. [65,66]. The amplitudes of some free conformal field theories on branched covers
of P1 have been constructed in.

To conclude this section, we present a beautiful formula of Weierstrass [53] to construct
a second kind differential on an hyperelliptic curve. Thus, we consider curves of the kind
(2.21), where

P2g+2(x1) = A0 + A1x1 + · · · + A2g+2x
2g+2. (3.14)

Let us define the function:

R(x1, x
′
1)=A0 + 1

2A1(x1 + x′
1)+ A2x1x

′
1 + 1

2A3(x1 + x′
1)x1x

′
1 + A4(x1x

′
1)

2

+1
2A5(x1 + x′

1)(x1x
′
1)

2 + · · · + 1
2A2g+1(x1 + x′

1)(x1x
′
1)
g

+A2g+2(x1x
′
1)
g+1. (3.15)

Clearly,R(x1, x
′
1) satisfies the property

R(x1, x
′
1) = R(x′

1, x1). (3.16)

Moreover, ifx1 = x′
1, one has that

R(x1, x
′
1) = P2g+2(x1),

∂R(x1, x
′
1)

∂x1

∣∣∣∣
x1=x′

1

= 1

2

∂P2g+2(x1)

∂x1
. (3.17)

The differential of the second kind is given by

τx′
1
(x1) = −y(x1)y

′(x1)+ R(x1, x
′
1)

2(x1 − x′
1)

2y(x1)y′(x1)
dx1, (3.18)

wherey′(x1) = ∂y(x1)/∂x1. It is easy to show using the properties (3.16) and (3.17) that
τx′

1
(x1) has only a pole of the second order inx1 = x′

1 as it should be. Unfortunately, it is
not simple to extend the elegant formula (3.18) to theZn symmetric curves, not to mention
the general plane algebraic curves of Eq. (2.17) or the even more complicated curves (2.25).

4. Generalized Weierstrass kernels

In this section, we construct analogs of the Weierstrass kernel on affine algebraic curves
defined by the system of equations (2.25). Even if it will not be strictly necessary, we suppose
to fix the ideas that the intersection of the two hypersurfaces in (2.25) is complete and gives
as a result an algebraic curveC which coincides, modulo conformal transformations, with
a Riemann surfaceΣ .

The following two different cases can formally be treated in the same way. On one side,
x1, x2, x3 may be interpreted as coordinates inC3, so thatΣ is not compact due to the
absence of the points at infinity. Alternatively, the vanishing of the polynomials (2.25) can
be associated to a ramified covering ofP1 as we have seen in Section 2 andΣ is a compact
Riemann surface of genusg.
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Let us consider as in the previous section two different pointsp, q ∈ Σ . On the al-
gebraic curveC they correspond to coordinatesx(p) = x1(p), x2(p), x3(p) andy(q) =
y1(q), y2(q), y3(q). A possible analog of the Weierstrass kernel onC is given by

Ksym(x, y) = 1

3

3∑
i=1

Ni(x, y)

J i(x)

dxi
(x1 − y1)(x2 − y2)(x3 − y3)

, (4.1)

where

J i(x) = ε ikl ∂f (x)

∂xk

∂g(x)

∂xl
, (4.2)

N1(x, y) = f (y1, y2, x3)g(x1, y2, x3)− f (x1, y2, x3)g(y1, y2, x3), (4.3)

N2(x, y) = f (x1, y2, y3)g(x1, x2, y3)− f (x1, x2, y3)g(x1, y2, y3), (4.4)

N3(x, y) = f (y1, x2, y3)g(y1, x2, x3)− f (y1, x2, x3)g(y1, x2, y3). (4.5)

Hereε ikl denotes the completely antisymmetric tensor in three dimensions with the conven-
tion ε123 = 1. We note that the variablesx, y and the functionsf andg enter symmetrically
in the expression of the kernel (4.1), as it should be since none of them plays a privileged
role in the definition of the algebraic curve. The symmetry under the exchange off andg
is also related to the freedom of projecting the curve in the two possible ways shown by
Eqs. (2.26) and (2.27).

Equivalent kernels can be obtained starting fromKsym(x, y) and adding differentials in
such a way that the behavior near the singularity inx = y remains unchanged. For instance,
exploiting the identities:

dx1

J 1
= dx2

J 2
= dx3

J 3
, (4.6)

which are a consequence of the implicit function theorem and using the fact that the numer-
atorsN1, N2, andN3 differ each other by functions that vanish inx = y, one may derive
the following kernel:

K(x, y) = N1(x, y)

J 1(x)

dx1

(x1 − y1)(x2 − y2)(x3 − y3)
. (4.7)

The above kernel is less symmetric thanKsym(x, y), but has a more compact expression.
In the particular case of a branched cover of a plane curve, in which the algebraic equations
(2.25) assume the form (2.29) and (2.30),K(x, y) is simply given by

K(x, y) = − f (x1, y2)g(y2, x3)

[∂g(x)/∂x3][∂f (x)/∂x2]

1

(x1 − y1)(x2 − y2)(x3 − y3)
. (4.8)

Let us investigate the behavior ofK(x, y) nearx = y. To this purpose, it is sufficient to
expandN1(x, y) with respect toy at the pointx. At the leading order

N1(x, y) ∼ J 1(x)∆x2∆x3, (4.9)

where∆xi = yi − xi is very small by hypothesis. We note that, in principle, there are also
contributions proportional to∆x1 in the expansion ofN1(x, y). In order to obtain Eq. (4.9),
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∆x1 has been expressed in terms of∆x2 and∆x2 with the help of (4.6). Substituting (4.9)
in (4.7), we find thatK(x, y) satisfies the property (3.2) as desired

K(x, y) ∼ dx1

x1 − y1
. (4.10)

A similar calculation forKsym(x, y) gives the result

Ksym(x, y) ∼ 1

3

3∑
i=1

dxi
xi − yi

. (4.11)

In this case one should remember that not all variablesx1, x2, x3 are independent due to the
relations (2.25), so that Eq. (4.11) must be worked out further. Assuming for instance that
x1 is a good local coordinate in a neighborhood of the pointp, one can solve the system
of algebraic equations (2.25) with respect to the remaining variables, so thatxj = xj (x1)

for j = 2,3. In the same wayyj = xj (y1) for j = 2,3 in a neighborhood ofq, with
y1 = x1 +∆x1. As a consequence

dxj (x1) = dxj
dx1

dx1, xj (y1)− xj (x1) ∼ −dxj
dx1

∆x1, j = 2,3. (4.12)

Using the above relations in (4.11), one obtains

Ksym(x, y) ∼ dx1

x1 − y1
. (4.13)

Thus, also the kernel (4.1) has the requested behavior near the pole inx = y.
Besides the required simple pole inx = y, the kernels (4.1) and (4.7) have also spurious

poles, which have to be controlled and suitably subtracted in order to construct physical
correlation functions with desired singularities. The study of these spurious poles will be
the subject of the rest of this section.

Since the structure of the kernels (4.1) and (4.7) consists in ratios of polynomials ofx and
y, their possible divergences may only occur at the zeros of the denominatorsJ i(x)(x1 −
y1)(x2 − y2)(x3 − y3) or at the infinities of the numeratorsNi(x, y), i = 1,2,3.

First of all, we consider the zeros ofJ 1(x). The cases in whichi = 2,3 can be treated
in an analogous way. Letx(a) = (x1(a), x2(a), x3(a)), a ∈ Σ , be a point onC for which
J 1(x) = 0. In x(a) the system of algebraic equations (2.25) becomes no longer invertible
with respect tox2 andx3. Given a good local coordinatet in a neighborhood ofx(a), this
implies that

x1 − x1(a) = tλ, (4.14)

x2 = α0 + α1t
µ + · · · , x3 = β0 + β1t

ν + · · · , (4.15)

whereλ is an integer containing the integersµ andν as sub-factors. In Eq. (4.15), we
suppose thatx2 andx3 do not diverge ina, so thatλ,µ, ν are all positive. If not, it is always
possible to perform in Eq. (2.25) a change of variablesx2, x3 → x′

2, x
′
3 similar to that

of Eq. (3.13) to make the new variablesx′
2, x

′
3 finite in a. We note that the monodromy
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properties ofx2 andx3 may be in general different, so thatµ andν need not to be equal.
Nearx(a) the relations (4.6) become

λtλ−1 dt

J 1(x)
= µtµ−1 dt

J 2(x)
= νtν−1 dt

J 3(x)
, (4.16)

wherex is a function oft given by Eqs. (4.14) and (4.15). At this point it is possible to
invoke the regularity condition (2.4), which assures thatJ 2(x), J 3(x) �= 0 in x = x(a).
Sinceµ, ν ≤ λ it is easy to see from (4.16) that the zeros ofJ 1(x) are absorbed by
the corresponding zeros of the differential dx1. As a consequence, there are no spurious
divergences at these points.

One can also verify that there are no poles when(x1 − y1)(x2 − y2)(x3 − y3) = 0 apart
from the one inx(p) = y(q), which is related to the required singularity inp = q. Spurious
poles of this kind may in principle occur if two different pointsp, q ∈ Σ correspond on the
algebraic curve to coordinatesx(p) andx(q) characterized by the fact that some of their
components, but not all, coincide (for instancex1 = y1, x2 = y2 andx3 �= y3). The proof
that no spurious divergence arises in this case is straightforward and will not be reported here.

In conclusion, the kernels (4.1) and (4.7) diverge only at the poles of the numerators
Ni(x, y). In general, the latter are located at the points in which the variablesx andy
become very large.

5. The case of general non-hyperelliptic curves of genus four

A general non-hyperelliptic algebraic curve of genus four is given by the complete in-
tersection of a quadric with a cubic as mentioned in Section 2. In fact, puttingdF = 3 and
dG = 2 in (2.24), one obtains exactlyg = 4. For instance, one can choose in Eq. (2.23)
G(ξ) as follows:

G(ξ1, ξ2, ξ3, ξ4) = ξ0ξ1 − ξ2ξ3, (5.1)

while F(ξ) is a homogeneous polynomial of degree 3. In affine coordinatesξi = ξi/ξ0,
i = 1,2,3,F(ξ) andG(ξ) are replaced by

G(1, x1, x2, x3) = g(x1, x2, x3) = x2x3 − x1, (5.2)

F(1, x1, x2, x3) = f (x1, x2, x3) = x3
3 + h1(x1, x2)x

2
3 + h2(x1, x2)x3 + h3(x1, x2),

(5.3)

where

hi(x1, x2) =
i∑

k,l=0
k+l≤3

a
(i)
kl x

k
1x

l
2, i = 1,2,3, (5.4)

and thea(i)kl are complex coefficients. We note that the polynomialf (ξ1, ξ2, ξ3) has been
ordered according to the different powers ofx3. This is just a convention which does not
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reflect any special role ofx3. In the same way one could orderf (ξ1, ξ2, ξ3) with respect to
the powers ofx1 or x2. All necessary ingredients to construct the Weierstrass kernels (4.1)
and (4.7) are derived in a straightforward way substituting Eqs. (5.2) and (5.3) in (4.2)–(4.5).

In the following, we will assume thatx1 is a good local coordinate of the curve. The
cases in whichx1 ∈ C or x1 ∈ P1 can be formally treated in the same way. Accordingly,
we solve the system of algebraic equations

f (x1, x2, x3) = g(x1, x2, x3) = 0 (5.5)

with respect tox1. 4 As a result, one obtains two multivalued functionsx2(x1) andx3(x1).
Due to Eq. (5.2), bothx2(x1) andx3(x1) share the same monodromy properties. They define
a Riemann surfaceΣ4 constructed in terms of sheets. It is easy to check thatx2(x1) and
x3(x1) have six branches, so thatΣ4 consists of six sheets glued together at the branch
lines. The computation of the resultantR(x1, x2) of the two algebraic equations (5.5) is
straightforward and gives the following plane curve equation associated toΣ4:

x3
1 + h1(x1, x2)x

2
1x2 + h2(x1, x2)x1x

2
2 + h3(x1, x2)x

3
2 = 0, (5.6)

which indeed describes a curve of genus four.
Due to the peculiar role played by the variablex1, it is natural to consider the kernel

K(x, y) instead of the more symmetric one of Eq. (4.1). Inserting Eqs. (5.2) and (5.3) in
(4.7), one obtains

K(x, y) = − dx1

(x1 − y1)J 1(x)

[
x3f (y1, y2, x3)

x3 − y3
+ y2f (x1, y2, x3)

x2 − y2

]
, (5.7)

where we should remember that we are dealing with multivalued functionsxj = xj (x1)

andyj = yj (y1) for j = 2,3. With respect to the general formula (4.7), in this case some
simplifications have been possible because of the particular form ofg(x1, x2, x3). One can
check that the above kernel has the desired pole whenxi = yi for i = 1,2,3. If one wishes
to study the kernel (5.7) in the neighborhood of a branch point whereJ 1(x) = 0, it is
possible to perform the conformal transformationx1 = x1(x2).

Let us now concentrate on the spurious divergences ofK(x, y). From the previous section,
we know that they may only occur at the infinities of the variablesxi, yi , i = 1,2,3. In this
case, the situation is made simpler by the fact thatx2(x1) andx3(x1) have no poles for finite
values ofx1. To show that, let us imagine that a pointa ∈ Σ4 corresponds on the algebraic
curve to a pointx1(a) wherex3 has a pole of orders:

x3(x1) ∼ (x1 − x1(a))
−s . (5.8)

Due to Eq. (5.2), the functionx2(x1) has a zero of the same order at the same point

x2(x1) ∼ (x1 − x1(a))
s . (5.9)

4 There is no loss of generality in doing that. If one wishes to study the algebraic curve in the neighborhood of a
branch point, wherex1 is no longer a good coordinate, it is always possible to perform a conformal transformation
and to considerx1 as a function ofx2 or x3.
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Thus, in the limitx1 = x1(a) the polynomialshi(x1, x2), i = 1,2,3, may be replaced by
suitable constantsA1, A2, A3 neglecting higher order terms inx1 −x1(a). Hence, Eq. (5.3)
is approximated by

x3
3 + A1x

2
3 + A2x3 + A3 = 0. (5.10)

Clearly, the above equation has no solutions ifx3 = ∞. Analogously, sincex3 andx2 enter
in Eq. (5.5) symmetrically, it is possible to verify thatx2(x1) has no divergences for finite
values ofx1.

To study the singularities ofx2(x1) andx3(x1) at infinity, it is convenient to introduce
the new variablex′

1 = x−1
1 . Let us now suppose thatx2 andx3 have the following behavior

nearx′
1 = 0:

x2 = α(x′
1)
s + · · · , x3 = β(x′

1)
−1−s + · · · . (5.11)

The second relation (5.11) is again a consequence of (5.2). Substituting the ansatz (5.11) in
(5.3), it is easy to verify that the latter equation is satisfied only ifs = −1 or 0. In the first
case, there are three branches ofx2 andx3 such thatx2 diverges

x2 ∼ 1

x′
1
, x3 ∼ const. (5.12)

If s = 0, instead, there are other three branches in whichx3 becomes singular

x2 ∼ const., x3 ∼ 1

x′
1
. (5.13)

At this point, we are ready to discuss the spurious poles of the kernel (5.7). As a mero-
morphic differential inx1,K(x, y) has three simple poles inx1 = 0. The latter occur in the
three branches ofx2 andx3 where Eq. (5.13) is satisfied. In each of these branches,K(x, y)

has residue−1
3:

K(x, y) = −1

3

dx′
1

x′
1

+ · · · . (5.14)

It is easy to check that there are no other spurious singularities inx. 5 ThusK(x, y) is a
differential of the third kind onΣ4. Taking into account also the simple pole inx = y, the
sum of all its residues vanishes as it should be on a compact surface.

To study the singularities with respect to the variablesy, it is convenient to rewriteK(x, y)
in a slightly different form, obtained by expanding in (5.7)f (y1, y2, x3) andf (x1, y2, x3)

in powers ofx3 andy2, respectively. Sincef (x) is a polynomial in its arguments of degree
3, the expansions below

f (y1, y2, x3) =
3∑
n=1

∂nf (y)

∂yn3

(x3 − y3)
n

n!
, (5.15)

5 In principle, one would expect the appearance of singularities also in the branches in which Eq. (5.12) is satisfied
due to the symmetry between the variablesx2 andx3 in (5.5). However, we remember that this symmetry has been
explicitly broken by the way in which the kernelk(x, y) has been constructed.
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f (x1, y2, x3) =
3∑
n=1

∂nf (x)

∂xn2

(x2 − y2)
n

n!
(5.16)

are exact. As a consequence, inserting (5.15) and (5.16) in (5.7), we have that

K(x, y) = P(x, y)

J 1(x)(x1 − y1)
dx1, (5.17)

where

P(x, y) =
3∑
n=1

[
y2
∂nf (x)

∂xn2

(x2 − y2)
n−1

n!
− x3

∂nf (y)

∂yn3

(x3 − y3)
n−1

n!

]
. (5.18)

Now, we exploit the fact that the spurious divergences ofK(x, y) are located at the points in
whichy1 = ∞ as the previous analysis has shown. Therefore, it is convenient to keep in the
kernel only the contributions which diverge iny1 = ∞. Using the formula 1/(x1 − y1) =
−(1/y1)

∑∞
n=0(x1/y1)

n, we find

K(x, y) ∼ dx1

J 1(x)
[A1(y)+ x1A2(y)+ x2A3(y)+ x3A4(y)], (5.19)

where

A1(y) = −y−1
1 (a

(3)
03 y

3
2 + a

(3)
02 y

2
2), (5.20)

A2(y) = −a(3)03

y3
2

y2
1

− a
(3)
12

y2
2

y1
, (5.21)

A3(y) = −a(3)03

y2
2

y1
, (5.22)

A4(y) = y−1
1 [−a(2)02 y

2
2 + 7y2

3 + 3y3h1(y1, y2)+ h2(y1, y2)]. (5.23)

We notice thatK(x, y) has the following behavior near the spurious poles iny1 = ∞:

K(x, y) ∼
4∑
i=1

ωi(x)Ai (y), (5.24)

where theωi(x) are holomorphic differentials. As a matter of fact, using Eqs. (5.12) and
(5.13) it is easy to check that a basis of holomorphic differentials onΣ4 is

ω1(x) = dx1

J 1(x)
, ω2(x) = x1 dx1

J 1(x)
, (5.25)

ω3(x) = x2 dx1

J 1(x)
, ω4(x) = x3 dx1

J 1(x)
. (5.26)

As a result, it is possible to conclude that the divergent part ofK(x, y) given in Eq. (5.19)
is proportional to holomorphic differentials inx. This property of the kernel (5.7) will be
crucial in subtracting the spurious divergences from the amplitudes of the conformal field
theories which will be the subject of the next section.
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6. Free conformal field theories on a general non-hyperelliptic curve of genus four

In this section, we apply the previous results to the computation of the amplitudes of
the free conformal field theories appearing in the action of bosonic strings on a general
non-hyperelliptic surface of genus fourΣ4. These systems are well known and represent
a good way to test the generalized Weierstrass differential constructed in Section 4. Apart
from the above mentioned works in the case of hyperelliptic and non-hyperelliptic curves,
they have been studied by various authors and different methods on Riemann surfaces (see,
for instance [86–115]).

First of all, we discuss the case of fermionicb–c systems with integer spinλ = 1,2.
In isothermal coordinatesp, p̄ where the metric becomes conformally flat, their action is
given by

Sbc =
∫
Σ4

d2p b∂̄c, (6.1)

where d2p = i dp ∧ dp̄ and∂̄ = ∂/∂p̄. The fieldsb are meromorphic tensors onΣ4 with
λ lower indices, while the fieldsc are characterized byλ− 1 upper indices. From Eq. (6.1),
one obtains the following equations of motion:

∂̄b = ∂̄c = 0. (6.2)

We start with the caseλ = 2. We denote withφµ,µ = 1, . . . ,9, the holomorphic quadratic
differentials which represent a basis of non-trivial solutions of (6.2). Ifp1, . . . , pm and
q1, . . . , qn are points inΣ4, the non-vanishing correlation functions of theb–c systems

G2(p; q) =
〈
m∏
α=1

b(pα)

n∏
β=1

c(qα)

〉
(6.3)

should satisfy the relationm− n = 3g − 3 = 9.
The zeros and poles ofG2(p; q) are determined by the physical properties of the fields.

To specify their locations and orders it is convenient to introduce the concept ofdivisor.
Let∆[T ] denote the divisor of a given meromorphic tensorT (p) on the Riemann surface.
If T has zeros atp = pi of orderµi , i = 1, . . . , mzerosand poles of orderνj atp = qj ,
j = 1, . . . , npoles, then∆[T ] can be written as follows:

∆[T ] =
mzeros∑
i=1

µipi −
npoles∑
j=1

νjqj . (6.4)

The correlation function (6.3) is a tensor with two lower indices in each variablepα, α =
1, . . . , m and the following divisor:

∆pα [G2] =
m∑

α′=1
α′ �=α

pα′ −
n∑

β ′=1
β ′ �=β

qβ ′ . (6.5)
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With respect toqβ , instead,G2(p; q) is a vector with an upper index and divisor

∆qβ [G2] =
n∑

β ′=1
β ′ �=β

qβ ′ −
m∑

α′=1
α′ �=α

pα′ . (6.6)

To constructG2(p; q) explicitly, we representΣ4 as a ramified coveringC4 associated to
the system of algebraic equations (5.5) treated in the previous section. We begin by noting
that a meromorphic tensorT (p) with λ indices on the Riemann surfaceΣ4 corresponds
in C4 to a tensorT (x(p)) = Tx1,...,x1(x(p))dxλ1, wherex(p) = x1(p), x2(p), x3(p) and
x1(p) ∈ P1. A pole or a zero ofT (p) in p = q corresponds to a pole or a zero ofT (x(p))
of the same order inx(p) = y(q).

A basis of independent holomorphic quadratic differentials is given by

φ1(x) =
(

dx1

J 1(x)

)2

, φ2(x) = x1

(
dx1

J 1(x)

)2

, φ3(x) = x2

(
dx1

J 1(x)

)2

, (6.7)

φ4(x) = x3

(
dx1

J 1(x)

)2

, φ5(x) =
(
x1 dx1

J 1(x)

)2

, φ6(x) =
(
x2 dx1

J 1(x)

)2

, (6.8)

φ7(x) =
(
x3 dx1

J 1(x)

)2

, φ8(x) = x1x2

(
dx1

J 1(x)

)2

, φ9(x) = x1x3

(
dx1

J 1(x)

)2

.

(6.9)

Clearly, a quadratic differential of the kindφ10(x) = x2x3(dx1/J
1(x))2 would not be

independent due to Eq. (5.2).
It is also easy to check that the following quadratic differential:

K2(x, y) = −
(

dx1

J 1(x)

)2 [
x3f (y1, y2, x3)

(x1 − y1)(x3 − y3)
+ y2f (x1, y2, x3)

(x1 − y1)(x2 − y2)

]
(6.10)

has only a simple pole at the pointxi = yi , i = 1,2,3. In fact,K2(x, y) is obtained
multiplying together the Weierstrass kernel (5.7) and the holomorphic differentialω1(x)

of Eq. (5.26). The zeros of the latter cancel exactly the poles ofK(x, y). Indeed, since
J 1(x) = (∂f/∂x2) − x1(∂f/∂x3) andf is a polynomial of degree 3 inx3, we have that
J 1(x) ∼ −(1/x′3) at infinity in the three branches in which Eq. (5.13) is satisfied.

At this point we are ready to write the correlation functions of theb–c systems withλ = 2
onC4:

G2(p; q)

= det

∣∣∣∣∣∣∣∣
K2(x(p1), y(q1)) · · · K2(x(p1), y(q1)) φ1(x(p1)) · · · φ9(x(p1))

...
. . .

...
...

. . .
...

K2(x(pm), y(q1)) · · · K2(x(pm), y(qn)) φ1(x(pm)) · · · φ9(x(pm))

∣∣∣∣∣∣∣∣
.

(6.11)
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Due to the properties of determinants, the right-hand side of the above equation has the
desired simple zeros wheneverxi(pα) = xi(pα′), α, α′ = 1, . . . , m andyi(qβ) = yi(qβ ′),
β, β ′ = 1, . . . , n, i = 1,2,3. Moreover, all the poles ofG2(p; q) are simple and occur at
the points in whichxi(pα) = yi(qβ).

In principle, there could be also spurious poles due to the fact thatK2(x, y) diverges
when the variabley becomes very large. However, from what it has been discussed in the
previous section, it is easy to realize thatK2(x, y) has the following behavior iny1 = ∞:

K2(x, y) ∼
4∑
i=1

ωi(x)Ai (y), (6.12)

where the functionsAi have been defined in Eq. (5.24) and diverge wheny1 → ∞. Terms
of the form (6.12) consist in a linear combination of quadratic differentials, which does not
contribute in the determinant of Eq. (6.11).

Let us now treat the caseλ = 1. On the Riemann surfaceΣ4 the non-vanishing correla-
tions functions are given by

G1(p, q) =
〈
m∏
α=1

b(pα)

n∏
β=1

c(qα)

〉
, (6.13)

wherem−n = g−1 = 3. Again, the poles and zeros of the above correlator are determined
by the physical properties of theb–c fields. The divisors ofG1(p, q) are similar to those
of G2(p, q) with simple zeros wheneverpα = pα′ or qβ = pβ ′ and simple poles when
pα = qβ , with α, α′ = 1, . . . , m, β, β ′ = 1, . . . , n.

The explicit construction ofG1(p; q) on the ramified coveringC4 goes as follows. First
of all, we define the differential

νy(q)y(q ′)(x(p)) = K(x(p), y(q))−K(x(p), y(q ′)). (6.14)

This is a differential of the third kind inx(p), with two simple poles inx(p) = y(q) and
x(p) = y(q ′) and residues+1 and−1, respectively. The spurious poles ofK(x(p), y(q))
in x1 = ∞ are canceled against the analogous poles ofK(x(p)− y(q ′)). At this point it is
possible to write the expression ofG1(p; q):

G1(p; q)

= det

∣∣∣∣∣∣∣
νy(q1)y(qn)(x(p1)) · · · νy(qn−1)y(qn)(x(p1)) ω1(x(p1)) · · · ω4(x(p1))

...
. . .

...
...

. . .
...

νy(q1)y(qn)(x(pm)) · · · νy(qn−1)y(qn)(x(pm)) ω1(x(pm)) · · · ω4(x(pm))

∣∣∣∣∣∣∣ .
(6.15)

As in the caseλ = 2, Eq. (5.24) implies the absence of spurious poles in they variables
in (6.15).

To conclude our list of conformal field theories which appear in bosonic string theory,
we treat the scalar fields with action

S =
∫
Σ4

d2p ∂X∂̄X. (6.16)



F. Ferrari / Journal of Geometry and Physics 40 (2002) 233–258 253

All the correlation functions of the scalar fields are obtained once the following correlator
is known:

G(p; q, q ′) = 〈∂pX(p, p̄)[X(q, q̄)−X(q ′, q̄ ′)]〉 dp. (6.17)

It turns out thatG(p; q, q ′) is acanonical differential of the third kinduniquely determined
by the following properties:

1. G(p; q, q ′) has only two simple poles inp = q andp = q ′ with residues+1 and−1,
respectively.

2. The integral function
∫
G(p; q, q ′) has purely imaginary periods when transported

around the 2g = 8 non-trivial homology cycles ofΣ4.

On the algebraic curveC4 the Green function (6.17) can be written as a vector field
G(x(p); y(q), y(q ′)), wherex(p) = x1(p), x2(p), x3(p), etc.G(x(p); y(q), y(q ′)) co-
incides to the third kind differentialνy(q)y(q ′)(x(p)) defined in Eq. (6.14) up to a linear
combination of holomorphic differentials, which is fixed by requirement (2). In practice,
since it is hard to deal with integrals over homology cycles in the case of algebraic curves,
it is convenient to formulate this requirement in terms of surface integrals. Indeed, it is pos-
sible to show that (2) is satisfied if and only ifG(x(p); y(q), y(q ′)) fulfills the following
Riemann bilinear identities:∫

C4

G(x(p); y(q), y(q ′)) ∧ ωi(x(p)) = 0, i = 1, . . . ,4. (6.18)

The surface integrals overC4 in (6.18) can be interpreted as integrals in a three-dimensional
complex space concentrated in the solutions of Eq. (5.5) (see Appendix A). At this point
we are able to write the Green functionG(x(p); y(q), y(q ′)) in terms of the third kind
differential (6.14) and of the holomorphic differentials (5.25) and (5.26)

G(x(p); y(q), y(q ′))

= det

∣∣∣∣∣∣∣∣∣∣

νy(q)y(q ′)(x(p)) ω1(x(p)) · · · ω4(x(p))∫
C4
νy(q)y(q ′) ∧ ω1

∫
C4
ω1 ∧ ω1 · · · ∫

C4
ω1 ∧ ω4

...
...

. . . · · ·∫
C4
νy(q)y(q ′) ∧ ω4

∫
C4
ω4 ∧ ω1 · · · ∫

C4
ω4 ∧ ω4

∣∣∣∣∣∣∣∣∣∣
. (6.19)

It is easy to see that the above differential of the third kind satisfies requirement (1) and the
relations (6.18), which are equivalent to (2).

7. Conclusions

In Section 4, an analog of the Weierstrass kernel has been constructed on non-plane al-
gebraic curves associated to the vanishing of two polynomialsf andg. The freedom of
adding linear combinations of differentials which do not change the behavior inx = y

has been exploited in order to get two different, but equivalent, versions of generalized
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Weierstrass kernels. The first versionKsym(x, y), given in (4.1), is symmetric with re-
spect to the variablesx, y and with respect to the exchange off with g. This is in agree-
ment with the fact that neither the coordinates nor the functionsf andg play a special
role in the equations which define the curve. The alternative kernelK(x, y) of Eq. (4.7)
has the advantage to have a more compact expression in comparison toKsym(x, y), but
part of the symmetry under coordinate permutations is lost. If the branched cover of an
algebraic curve is considered, the generalized Weierstrass kernelK(x, y) has the simple
form (4.8).

Furthermore, it has been verified that both kernelsKsym(x, y) andK(x, y) are third kind
differentials with a simple pole in the desired pointx = y of the curve, in agreement with
property (3.2), which characterizes the analogs of the Cauchy kernel on Riemann surfaces
[3]. In Section 4, it has also been proved that spurious singularities may only occur at the
points in which one or more of the components of the coordinatesx or y approach infinity.
In the absence of a general algorithm to treat these spurious singularities like that developed
in the case of plane curves in [65,66], the terms to be subtracted in order to get the desired
correlation functions should be derived separately for any given polynomialsf andg. The
example of a general non-hyperelliptic curve of genus four has been explicitly worked out
and the amplitudes of bosonic string theory have been computed (see Eqs. (6.11), (6.15)
and (6.19)).

Finally, nothing has been said about non-hyperelliptic Riemann surfaces obtained from
the intersection ofn−1 hypersurfaces inPn with n > 3. However, it is clear from Eqs. (4.1)
and (4.7) what should be the structure of the generalized Weierstrass kernel on these curves.
The JacobiansJ i(x) should be replaced by analogous Jacobians containing derivatives of
the n − 1 polynomialsf1, . . . , fn−1 with respect to any possible(n − 1)-dimensional
subsets of the coordinates. The numeratorsNi(x, y) will contain a sum of products of
polynomialsf1, f2, . . . , fn−1, in which the dependence on the variablesx1, . . . , xn and
y1, . . . , yn is chosen in such a way that the spurious poles in the denominator given by
the factor

∏n
i=1(xi − yi) are canceled, so that only the desired singularity inxi = yi ,

i = 1, . . . , n remains.
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Appendix A. Surface integrals over C4

In this section, we show that the surface integrals appearing in Eqs. (6.18) and (6.19) can
be expressed as integrals in a three-dimensional complex space in the presence of Dirac
δ-functions which impose the constraints (5.5). We suppose here thatx ∈ C3, but the result
is valid also for a compact curve, in which caseC3 has to be replaced byP3

1 and the non-flat
metric ofP1 should be taken into account.
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Let us consider a surface integral of the kind

I =
∫
C4

ρ, (A.1)

whereρ(x(p)) is a(1,1)-form. In componentsρ(x(p)) = ρx1x̄1(x(p))dx1 ∧ dx̄1 and

I =
∫
C4

d2x1(p)ρx1x̄1(x1(p), x2(p), x3(p)). (A.2)

SinceC4 is a curve associated to the system of algebraic equations (5.5), it is possible to
rewrite the integral (A.1) as follows:

∫
C4

d2x1(p)ρx1x̄1(x(p)) =
∫

C3
d6x

∣∣∣∣J
(
f g

x2 x3

)∣∣∣∣
2

δ(4)(f, g)ρx1x̄1(x(p)), (A.3)

where d6x is the volume element inC3,

J

(
f g

x2 x3

)
= det

∣∣∣∣∣∣∣∣∣

∂f

∂x2

∂g

∂x2

∂f

∂x3

∂g

∂x3

∣∣∣∣∣∣∣∣∣
, (A.4)

and the Diracδ-function δ(4)(f, g) has been defined using the formulas of Gel’fand and
Shilov [116]. After performing the change of variablesx2, x3 → f, g, this distribution
becomes an usual four-dimensionalδ-function

δ(4)(f, g) =
(
∂f ∂f̄ + ∂g∂ḡ

2π2

)
1

|f |2 + |g|2 . (A.5)

Now let us apply to Eq. (A.3) the inverse transformation which brings back to the old
coordinates. This can be done using the relations

∂f = 1

gx2fx3 − gx3fx2

(gx2∂x3 − gx3∂x2),

∂f = 1

gx2fx3 − gx3fx2

(fx3∂x2 − fx2∂x3). (A.6)

Substituting the result in Eq. (A.3), we obtain an explicit expression ofI in terms of
three-dimensional complex integrals∫

C4

d2x1(p)ρx1x̄1(x(p))

= 1

2π2

∫
d6x ρx1x̄1(x(p))[|(gx2∂x3 − gx3∂x2)|2 + |(fx3∂x2 − fx2∂x3)|2]

1

|f |2 + |g|2 .
(A.7)
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